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The present paper continues (Mallios & Raptigernational Journal of Theoretical
Physics$2001,40, 1885) and studies the curved finitary spacetime sheaves of incidence
algebras presented therein fronCach cohomological perspective. In particular, we
entertain the possibility of constructing a nontrivial de Rham complex on these finite
dimensional algebra sheaves along the lines of the first author’s axiomatic approach to
differential geometry via the theory of vector and algebra sheaves (MaBesmetry

of Vector Sheaves: An Axiomtic Approach to Differential Geometry, Vols Klu2er,
Dordrecht, 1998aMathematica Japonica (International Plaza)998b,48, 93). The

upshot of this study is that important “classical” differential geometric constructions
and results usually thought of as being intimately associatedifitismooth manifolds

carry through, virtually unaltered, to the finitary-algebraic regime with the help of
some quite universal, because abstract, ideas taken mainly from sheaf-cohomology
as developed in Mallios (1998a,b). At the end of the paper, and due to the fact that
the incidence algebras involved have been interpreted as quantum causal sets (Raptis,
International Journal of Theoretical Physics, 2089),1233; Mallios & Raptis, 2001),

we discuss how these ideas may be used in certain aspects of current research on discrete
Lorentzian quantum gravity.

KEY WORDS: quantum gravity; causal sets; abstract differential geometry; sheaf
theory; sheaf cohomology.

1. GENERAL QUESTION MOTIVATING OUR QUEST

e How much from the differential geometric panoply @*-smooth mani-
folds can we carry through, almost intact, to a finitary (i.e. locally finite)
algebraic setting?

This is the general question that motivates the present study. We will also ponder
on the following question that is closely related to the one above, but we will have
to postpone our detailed elaborations about it for a future work, namely
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e Are the pathologies (e.g., the so-called singularities) of the usual differen-
tial calculus on smooth manifolds “innate” to the calculus or “differential
mechanism” itself, or are they due to the particular structure (commutative
algebra) sheaf of the infinitely differentiable functions thetemploy to
coordinatize the points of th&°-smooth manifold?

This question, which in our opinion is the deeper of the two, puts into perspective
the classical diseases in the form of infinities that assail both the classical and
the quantum field theories of the dynamics of spacetime (i.e. gravity) and matter
(i.e. gauge theories), theories which in turn, assume up-front a smooth base space-
time continuum on which the relevant smooth fields are localized, dynamically
propagate, and interact with each other. For if these pathologies ultimately turn
out to be not due to the differential mechanism itself, but rather due to our own
assumption of algebras @¢F°-smooth coordinatizations (or measurements!) of
the manifold’s point events, there is certainly hope that by changing focus from
the structure sheaf of rings of infinitely differentiable functions on the smooth
manifold to some other “more appropriate” @ritable to the particular physical
problem in focupalgebra sheaves, while at the same time retaining at our disposal
most (in effectall!) of the powerful differential geometric constructions and tech-
nigues, the aforementioned diseases may be bypassed or even incorporated into
the resulting “generalized and abstract differential calculus” (Mallios, 1998a,b),
something that would effectively indicate that they are not really an essential part
of “the problem” after all (Mallios, in press, Mallios, in preparation)—that is, if
there is still any problem left for us to confroht.

So, to recapitulate our attitude towards the opening two questions: we contend
that the usual differential geometry of the “classia@t®-manifolds could be put
into an entirely “algebraic” (i.e. sheaf-theoretic) framework, thus avoid making
use of any Calculus at all, at least in the classical sense of the latter term. Thus,
to a great extent, differentiability may prove to be, in a deep sense, independent
of smoothness, and as a result, gravity may be transcribed to a reticular-algebraic
and sheaf-theoretic environment more suitable for infusing quantum ideas into it
than the problematic classical geometfit-smooth spacetime continuum. As a

4Certainly, there will still remain the noble challenge to actually construct a conceptually sound
and “calculationally” finite quantum theory of gravity, but at least it would have become clear
that the singularities of classical gravity and the weaker but still stubborn infinities of quantum
field theory are due to an inappropriate assumption—th&ofsmooth coordinates, not a faulty
mechanism—that of the differential calculus—and as a result they should present no essential, let
alone insuperable, obstacles on our by now notoriously long (mainly due to these pathologies of the
C*-smooth manifold) way towards the formulation of a cogent quantum gravity. For instance, the
works (Mallios and Rosinger, 1999, 2001) nicely capture this spirit, namely, that one can actually
carry out the usual differential geometric constructions over spaces and their coordinate structure
algebra sheaves that are very singular and anomalous—especially when viewed from the perspective
of the featureles§*°-smooth continuum.
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bonus from this transcription, we may discover that in the new finitary setting the
classical smooth differential pathologies are evaded, perhaps even incorporated
into the more general, abstract, and of a strong algebraic character sheaf-theoretic
differential geometric picture (Mallios, 1998a,b), so that they are not essentially
contributing factors to the difficulty of the problem of arriving at a sound quantum
theory of gravity (Mallios, in press; Mallios, in preparation). However, it may well
turn out thatin the particular finitary-algebraic sheaf theories of spacetime structure
and dynamics favored here, the real difficulties lie elsewhere, and that they are even
more severe than the ones troubling their smooth counterparts. Undoubtedly we
must keep an open mind, but then again we must also keep an optimistic eye and,
at this early stage of the development of the theory, at least give such alternative
combinatory-algebraic sheaf-theoretic ideas a decent chance.

We must also admit that such an endeavor is by no means new. Indeed,
Einstein, as early as 1 year after he presented the general theory of relativity,
doubted in the light of the quantum the very geometric smooth spacetime contin-
uum that supported his classical field theory of gravity:

... you have correctly grasped the drawback that the continuum brings. If the molecular
view of matter is the correct (appropriate) one; i.e. if a part of the universe is to be repre-
sented by a finite number of points, then the continuum of the present theory contains too
great a manifold of possibilities. | also believe that this “too great” is responsible for the
fact that our present means of description miscarry with quantum theory. The problem
seems to me how one can formulate statements about a discontinuum without calling
upon a continuum space-time as an aid; the latter should be banned from theory as a
supplementary construction not justified by the essence of the probéeconstruction

which corresponds to nothing real. But we still lack the mathematical structure unfor-
tunately® How much have | already plagued myself in this way of the manifald?

(1916) (Stachel, 1991)

and just 1 year before his death he criticized the pathological nature of the geometric
spacetime continuum so that, in view of the atomistic character of Physics that the
guantum revolution brought forth, he prophetically anticipagegtrely algebraic
theory for the description of realitfEinstein, 1956), much as follows:

...An algebraic theory of physics is affected with just the inverted advantages and
weaknesses, aside from the fact that no one has been able to propose a possible logical
schema for such a theorlt. would be especially difficult to derive something like a
spatio-temporal quasi-order from such a schefriaannot imagine how the axiomatic
framework for such a physics would appear, and | don't like it when one talks about

it in dark apostrophes. But | hold it entirely possible that the development will lead
there; for it seems that the state of any finite spatially limited system may be fully
characterized by a finite set of numbers. This seems to speak against a continuum with
its infinitely many degrees of freedom. The objection is not decisive only becengse
doesn’t know, in the contemporary state of mathematics, in what way the demand for

5Our emphasis
6 Again, our emphasis in order to prepare the reader for our quantum causal elaborations in the sequel.
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freedom from singularity (in the continuum theory) limits the manifold of solutions
(1954)8 (Stachel, 1991)

and a little bit later he agnostically admitted:

... Your objections regarding the existence of singularity-free solutions which could

represent the field together with the particles | find most justified. | also share this
doubt. If it should finally turn out to be the case, then | doubt in general the existence of
arational and physically useful continuous field theory. But what then? Heine’s classical
line comes to mind: And a fool waits for the answeér. . (1954). (Stachel, 1991)

So, as noted earlier, here we will content ourselves with trying to answer to
the first question opening this paper and in a later work we will attempt to swim
in the depths of the second (Mallios and Raptis, in preparation). Below, after we
give a “crash” review of the basic ingredients in the first author’s Abstract Dif-
ferential Geometry (ADG) theory (Mallios, 1998a,b) (Section 2), we initiate a
éech—type of cohomological treatment of the curved finitary spacetime sheaves
(finsheaves) (Raptis, 2000b) of incidence Rota algebras representing quantum
causal sets (qausets) introduced in Mallios and Raptis (2001) (Section 3), and then
construct the relevant de Rham complex on them based on an abstract version of
de Rham'’s theorera la ADG (Mallios, 1998a,b) (Section 4). The possibility of
recovering the “classical’>-smoothCech-de Rham complex from a net of the
aforementioned finsheaf-cochains above will be entertained in Section 5. Having
the finitary complex in hand, we will discuss the possibility of a finitary sheaf-
cohomological classification of the reticular spin-Lorentzian connection fi¢lds
dwelling on the gauged (i.e. curved) principal spin-LorentZignfinsheaves of
gausets and their associated vector (state) finsheaves studied in Mallios and Raptis
(2001) in much the same way that Maxwell fields on appropriate vector (line)
bundles associated witfi = U (1)-principal fiber bundles were classified, and

7 Again, our emphasis.

8tis quite remarkable indeed that these ideas of Einstein, especially his anticipation in the second quo-
tation above of deriving a spatio-temporal quasi-order from a discrete-algebraic theoretical schema,
foreshadow a modern approach to quantum gravity pioneered by Sorkin and coworkers coined
causal set theorgBombelli, et al. 1987; Rideout and Sorokin, 2000; Sorkin, 1990a,b, 1995,1997,
in preparation.), as well as its reticular-algebragaéntum causal sebutgrowth (Mallios, 2001;
Mallios and Raptis, 2001; Raptis, 2000a, 2001a). In these approaches to quantum gravity, it is
fundamentally posited that underlying the spacetime manifold of macroscopic experience there are
(quantum) causal set substrata—partially ordered sets (and their associated incidence algebras) with
their order being regarded as the discrete and quantum ancestor of the spatio-temporal quasi order
encoded in the lightcones of the classical relativistic spacetime continuum, which classical causal
order, in turn, “derives” from (i.e. can be thought as a coarse descendant of) the fundamental causal
order of causal sets and their quantal incidence algebraic relatives. We will return to the causal set
idea as well as to its algebraic and sheaf-theoretic counterparts in some detail in Sections 6 and 7.
The second author wishes to thank Rafael Sorkin for discussing the relevance of the Einstein quo-
tation above to the problem of quantum gravity—especially to the (quantum) causal set-theoretic
approach to the latter problem.
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subsequently “prequantized,” along Selesnick’s line bundle axiomatics for the sec-
ond quantization of bosonic (photon) fields (Selesnick, 1983), in Mallios (1998a,b,
1999, 2001) (Section 6). Arguably, as we contend in the penultimate part of the
paper (section 7), sections of the vector finsheaves associated with the principal
spin-LorentzianG,-finsheaves of gausets correspond to states of “bare” or free
graviton-like quanta(Mallios, 1998a,b; 1999, 2001; Mallios, in press; Mallios, in
preparation; Mallios and Raptis, 200%,)so that in the present granular-algebraic
context the fool in Einstein’s quotation of Heine above will appear to have found
the answer that he was desperately waiting for—and, all the more remarkably,
by evading altogether thé>-smoothness of the classical geometric spacetime
manifold. All in all, we hold thafield and particle can possibly coexist at ldost

going around the differential manifold spacetime and its pestilential singularities
via discrete-algebraic and sheaf-theoretic méargection 7 closes with a brief
discussion of some possible applications of such finitary-algebraic models and
their quantum causal interpretation (Bombetii,al, 1987; Mallios and Raptis,
2001; Raptis, 2000a, 2001a,b; Sorkin, 1990a,b, 1995,1997; Sorkin, in preparation)
to current research on discrete Lorentzian quantum gravity, as well as highlighting
some suggestive resemblances between our finitary application of ADG and the
Kock—Lawvere Synthetic Differential Geometry (SDG) (Lavendhomme, 1996).
The paper concludes (Section 8) with some physico-philosophical remarks in the
spirit of the two motivating opening questions above, as it were, to close the circle
that they opened.

2. BRIEF REVIEW OF ABSTRACT DIFFERENTIAL GEOMETRY

The rather technical elements from Mallios” Abstract (Axiomatic) Differen-
tial Geometry (ADG) briefly presented below are selected from (Mallios, 1998b),
which is a conciseésung of the more complete, but also more voluminous, work
(Mallios, 1998a}> We itemize our brief review of ADG into four parts: the basic

9 Coined “causons'—the quanta of causality—in Mallios and Raptis (2001).

10By the way, we also read from Selesnick (1983) that states of second quantized free fermionic fields
can be identified with sections of Grassmannian vector bundles (correspondingly, vector sheaves in
Mallios (1998a,b, 1999, 2001).

170 put it differently, and in contrast to Einstein’s mildly pessimistic premonitions above, to us
field theory does not appear to be inextricably tied to a geometric spacetime continuum: one can
actually do field theory on relatively discrete (i.e. “singular” and “disconnected” fronCtRe
smooth perspective) spaces. We thus seem to abide to the general philosophy that whenever one
encounters a contradiction between the mathematics (model) and the physics (reality), one should
always change the maths. Rgature cannot be pathologicat is only that our theoretical models
of Her are of limited applicability and validity (Mallios and Raptis, 2001).

12\jith the physicist in mind, we are not planning to plough through (Mallios, 1998a) in any detail
here. Our “heuristic” presentation of ADG from Mallios (1998b) should suffice for the “physical
level of rigour” assumed to be suitable for the present “physics oriented” study.
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mathematical objects involved, the main axioms adopted, the central mathematical
technique used, and ADG'’s core philosophy.

2.1. About the Assumptions: Three Basic Sheaves, Three Basic Objects

The basic mathematical objects involved in the development of ADG are
sheaves of (complex) vector spacés(C-vector space sheaves), of (complex
abelian) algebra\ (C-algebra sheaves), and of (differential) modulesver
such algebrasA-module sheaves). These sheaves are generically symbolized by
V, A2 and&, respectively.

The first basic object to be associated with the three kinds of sheaves above
is, of course, the base topological spatever which the vector space objects
V dwelling in (the stalks of)), the C-algebrasA in A, and theA-modulesE
in £, are localized. It is one of the principal assumptions of ADG that all the
three basic sheaves above have as common base spadeiteary topological
space—although this generality and freedom of choosing the “localization space”
X is slightly constrained by assuming that it should be, at Ig@sgcompacand
Hausdorff We will return to these two “auxiliary assumptions” frin the next
two sections. For now we note that in what folloxswill be usually omitted
from the sheaves above (i.e. we will simply write A etg, instead ofV’(X), A(X)
etc) for typographical economy, unless of course we wish to comment directly
on the attributes ofX. At this point we should also mention that in (Mallios,
1998a,b) an open covering = {U € X : U open in X} of X such that an
A-module sheaf (X) splits locally# into a finiten-fold Whitney (or direct) sum
A" of A with itselfts as€ |y= A" |y~ €V"18 s called “a local frame of” or “a
coordinatizing open cover of’, or even “a local choice of basis (or gauge!) for
£’ Y7 Thus, quite reasonably, the local sections of the abelian stru€talgebra
sheafA relative to the local framé/ carry the geometric denomination “(local)
coordinates,” whileA itself is called “the coefficient” or ¢-number coordinate
sheaf” (of€).

The second essential object involved in ADG is the so-calledgébraized
spacerepresented by the paiX( A); whereX is a topological space arda com-
mutativeC-algebra sheaf on it. For completeness, perhaps we should also include

13|n both Mallios (1998a and 1998b) commutative algebra sheaves were denat&dHiywever,
the same symbol we have already reserved for the spin-Lorentzian connections involved in
Mallios and Raptis (2001). Thus A" will be used henceforth to symbolize abelian algebra
sheaves.
14That is, with respect to evety in /.
150ne may simply think ofA" as a finite dimensional module ovAr—a module of finite “rank’n.
16WhereA" | y ~ €V" denotes the correspondingdimensionalC-vector sheaf isomorphism. We
also note in this context that a 1-dimensional vector sheaf (i.e. a vector sheaf ofxafikis called
a “line sheaf” in ADG.
17 Accordingly, every covering sét in I/ is coined “a local gauge &'
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C—the constant sheaf of complex numbé&rover X—into the C-algebraized
space, but again for typographical economy we will omit it in our elaborations
below.

The last basic object involved in ADG is the so-calldifferential triad,
represented by the tripleX( £(A), d); where X is again the base topological
space A again an abeliaC-algebra sheaf on # £ an A-module sheaf on it
with E usually taken to be th&_ -gradedA-moduleQ = &;2'1° of (complex)
differential forms, andi is a Cartan—Il&hler type of differential operator effecting
£-subsheaf morphisms of the following sait:Q' — Q'*! (Mallios and Raptis,
2001)2°

2.2. About the Axioms

Essentially, the ADG theory is based on the following two axioms or
assumptions:

(a) The (abstract) de Rham complex

o= 2-2)'=% c= 0 =% A= Q9 @
P =gz &5 gn 9
associated with the differential triack( A, £ = Q) is exact In Eqg. (1),
C is the constant sheaf of complex numbérsA is a commutative
C-algebra (structure) sheaf, and ths are (sub) sheaves (&2) of
(Z,-graded and complex) differentidkmodules. As we also mentioned
in the previous subsection, tlik-arrows { > 1) linking the sheaves in
the cochain expression (1) aleeaf morphismand, in particulami® = d
is a nilpotent Cartan—#tiler-like differential operatét.
(b) There is ashort exact exponential sheaf sequettce

In this paper we are going to deal in detail only with axiom (a) (Section 4)
since, as it was discussed in Section 1, we would like to study “purely

18\Which makes the doubleX( A) a C-algebraized spacbuilt into the differential triad.

dwith the sheaf of2s denoted by boldfac@.

20The reader is referred to expression (1), where such a differential triad is put into cohomological
liturgy.

2INote also that our symbolismi—2 for the canonical injection of the trivial constant zero sheaf
0= Q2into C, andd—! for the canonical embeddinrgof the complex numbers into the structure
algebra sheaf = 1, is a non-standard one not to be found in either Mallios (1998a or 1998b). It
was adopted for “symbolic completeness” and clarity. Findfly= 3 is the usual partial differential
operator acting in the usual way on the abelian “coordifatdgebras” dwelling in the stalks of
the structure sheaf.

22|n fact, it should also be mentioned here that (a) entailsslioyt exact sequendeom (1) (Mallios,
1998a,b).
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cohomological” features of the finsheaves in Mallios and Raptis (2001); hence, we
leave the relatively secondary assumption (b) (and the one mentioned in the foot-
note following it) to the reader’s curiosity which, however, can be amply satisfied
from reading Mallios (1998a,b). We must also remark here that, since we wish to
apply ADG to the finitary regime (Sections 4-7), the assumption (a) above is not
an “axiom” proper (i.e. a primitive assumption) any more; rather, it is a proposition
(about the exactness of the de Rham complex) that we must actually show that it
holds true in the locally finite case. We argue for this in Subsection 4.2.

2.3. About the Technique

We read from Mallios, (1998b) that the main technique employed in the
aufbauof ADG is sheaf-cohomolog? It is fair to say that the first author’'s main
mathematical motivation for building ADG was the possibility of abstracting,
and concomitantly generalizing, the usual de Rham cohomology of the “classi-
cal” differential calculus o£*°-smooth manifolds by using sheaf-cohomological
techniques on vector, algebra, and (differential) module sheaves over relatively
arbitrary topological spaces with ultimate aim towards resolving, or even possi-
bly evading altogether, the singular smooth manifold theory when viewed from a
broader and more potent sheaf-theoretic perspettigeich an endeavor, that is,
to generalize the usual de Rham theory, is most welcome also from a physical point
of view since, and we quote von Westenholz from von Westenholz (1981, “
structure underlying an intrinsic approach to physics is ‘essentially’ de Rham-
cohomology At the same time, we may recall Wheeler's fundamental insight
that in the higgledy-piggledy realm of the quantum perhaps the sole operative
“principle” is one of “lawwithout law” which, in turn, can also be translated in
(co)homological terms to the by now famous mottioe' boundary of a boundary
is zerd (Wheeler, 1990), and it is well known that the latter lies at the heart of
(de Rham) cohomology and, as we will see in the present work, in the latter’s
sheaf-theoretic generalization by ADG.

Now, on to a few slightly more technical details: a central notion in the sheaf-
cohomology used in ADG is that of axresolution of an abstrack-module sheaf
&, by which one means any cochalincomplex of positive degree or grade

S 1080 E gt g2 E @)

securing that the following&-enriched”A-complex
S 0—0be g0 Lot d g2 & ?)

23The reader is also referred to Strooker (1978) for a nice and relatively “down to earth” introduction
to sheaf-cohomology from a modern categorical perspective.
24See Section 1.
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is exact More particularly, if the S's in (3) are injective A-modules,
the A-resolution off is called ‘injectivé. In fact, any givenA-module sheaf

£ (on an arbitrary base topological spa¥¢ admits an injective resolutioa

la (3) (Mallios, 1998a). Such injective resolutions are of great importance in
defining nontrivial sheaf-cohomological generalizations (or abstractions) of
the concrete de Rham complex oi@&-smooth manifoléP and its correspond-

ing de Rham theorem. We return to them and their use in more detail in
Section 4.

2.4. About the Philosophy

We also read from Mallios (1998b) that the philosophy underlying a sheaf-
theoretic approach to differential geometry, with its intrinsic, abstract in nature,
sheaf-cohomological mechanism, is of an algebraic-operationalistic character.
This seems to suit the general philosophy of quantum mechanics according to
which what is of physical importance, the “physically real” so to speak, is less of
classical ideal of “background absolute objects” (such as “spacetime”, for instance)
existing “inertly out there,” independently of (i.e. not responding to) our own dy-
namically perturbing operations of observing “them”, and more of these operations
(or dynamical actions) themselves (Finkelstein, 1996)—operations which, in turn,
can be conveniently organized into algebra sheaves (Raptis, 2001a,b; Mallios and
Raptis, 2001). In a nutshell, ADG has made us realize that space (time) (especially
the classical, pointed geometiic°-smooth model of it) is really of secondary
importance for doing differential geometry; while, in practice, of primary im-
portance are the algebraically represented (dynamical) relations between objects
living on this space of which, especially in its continuous guise, we actually do
not have experience anyway (Raptis and Zapartin, 2000, 2001). In view of this
undermining of the smooth spacetime continuum that we wish to propound here,
it is accurate to say that the central didactic point learned from ADG is that one
should in a sense turn the tables around and instead of using algeltés of
functions to coordinatize (as it were, to measure!) space(time) when, as a matter
of fact, these very algebras derive from the differential manifold space itself, one
should rather commence with a structure algebra sheaitable to one’s physical
problem andierive space (timegnd possibly its (differential) geometric features
from it. Algebra (ultimately, dynamics) comes first; while, space and its (differen-
tial) geometric properties second. At the same time, this “manifold neglect” that
we advocate here is even more prominent in current quantum gravity research
where the classical ideal of an inert, fixed, absolute, ether-like background geo-
metrical smooth spacetime continuum (Einstein, 1924/1991), with its endogenous

25This is obtained by identifying the structure (coordinate) algebra shéaf(1) with the algebra
sheaf®C*(X) of infinitely differentiableC-valued functions oiX (i.e. A(X) = CC®(X)).
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pathologies and unphysical infinities, should arguably be replaced by something of
a more reticular-algebraic and dynamical character (Crane, 1995; Einstein, 1936,
1956). We strongly feel that sheaf theory, especially in the intrinsically algebraic
manner used by ADG, can provide a suitable language and useful tools for devel-
oping such an entirely algebraic description of quantum reality, in particular, of
guantum spacetime structure and its dynamics (i.e. quantum gravity) (Mallios and
Raptis, 2001).

On a more modest note, to these authors the present paper will have fulfilled
a significant part of its purpose if it introduced and managed to make plain to a
wider readership of (mathematical) physicists—in particular those interested in or
actually working on quantum gravity—some central concepts, constructions and
results from ADG, as well as how they may prove to be useful to their research. We
also believe that the application of ideas from ADG to a particular finitary-algebraic
context and to its associated discrete Lorentzian quantum gravity research program
as in this paper, will further enhance the familiarization of the reader with the basic
notions and structures of the abstract theory developed in Mallios (1998a,b, in
preparation). Our locally finite, causal, and quantal version of Lorentzian gravity
(Mallios and Raptis 2001; Raptis, in preparation) may be regarded as a physical
toy model of ADG.

3. RUDIMENTS OF FINITARY CECH (CO)HOMOLOGY

In this section we present the basic elements of a finitary version of the usual
Cech cohomology of a (paracompé$tC>-smooth manifold. The epithet “fini-
tary” pertains to a particular procedure or “algorithms”, due to Sorkin (1991), for
substituting bounded region¢?” of C%-manifoldsM2 by partially ordered sets
(posets) relative tX’s locally finite open cover® We further restrict our atten-
tion to “finitary poset substitutes” ok that aresimplicial complexegRaptis and
Zapatrin, 2000, 2001; Zapatrin, to appear). Such posets, for instance, are the ones
obtained from the so-calleahérve constructictoriginally due toCech (Eilenberg
and Steenrod, 1952) and subsequently, quite independently, due to Alexandrov
(1956, 1961). These finitary (i.e. locally finite) simplicial skeletonizationg%f
manifolds will provide the essential homological backbone on which we are going

260ne may wish to recall that a topological spatés said to be paracompact if every open cover of
it admits a locally finite refinement (Dugundji,1966).

27X is said to be bounded when its closure is compact. Such a space is otherwise known in the
mathematical literature as “relatively compact” (Dugundji, 1966).

28Technically speakingy is said to be2®-continuous when it is a topological manifold.

29 An open cover or local framéf of X is said to be locally finite if every point of X has an open
neighborhood that intersects a finite number of the covering opertsitd/. Ultimately, every
pointx of X belongs to a finite number of open sets in the coveting
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to support their dual finitary Rota-algebreﬂlech cohomological elaborations in
the sequel. So, let us commence with Sorkin’s algorithm.

3.1. Finitary C°-Substitutes Revisited

In this section, we briefly review Sorkin’s recipe for replactfgspacetime
continua by finitaryTo-poset topological spac@srelative to locally finite open
coverings. The original algorithm can be found in Sorkin (1991), and in less but
sufficient detail in Mallios and Raptis (2001), Raptis (2000a,b), and Raptis and
Zapatrin (2000, 2001).

Let X be a bounded region in a topological manifdidl. Assume that
U = {U} is a locally finite open cover or “coordinatizing frame” (or even “lo-
cal gauge basis”) of X. For every pointx of X symbolize byA(x) the small-
est open neighborhood coveringin the subtopologyZ of X generated by
U?: AX) lu:=nf{U el : x € U}. Then, define the following preorder rela-
tion “—"33 petweenX’s points with respect to theiks

X =Yy & A(X) C AY) (4)

and enquire under what condition the “preorder-topological spaces” defined by
“—"34 areTy. We read from Sorkin (1991) that this is so wher™is actually a
partial order “~"35 In order to convert the aforementioned preorder-topological
space into alp-poset, one simply has to factdf by the following equivalence
relation defined relative to" and/ as

xXye A =AY) & X~y Ay =X )

so that the resulting spad¢¥i/) := X/ %, consisting o#—equivalence classes of
the points ofX, is a poseTy-topological space. This so-called finitary substitute of

30Recall that a topological space is said toTpdf for every pair &, y) of points in it eitherx or y
possesses an open neighborhood about it that does not include the otltey yie.X, 3O(x) or
O(y) 1y € O(x) or x & O(y)) (Dugundji, 1966).

31See again Subsection 2.1.

32The subtopologyZ (i) of X is generated by arbitrary unions of finite intersections of the open
Us ini/ (viz. in other words, “the topology on the s¥tgenerated by/” or “the open sets i/
constitute a sub-basis for the topolo@yof X, the latter being, by the hypothesis faf, weaker
than the initialC®-manifold topology orX (Sorkin, 1991).

33We recall that a preorder is a reflexive and transitive binary relation.

34The relatively discrete topology” The “—~" defines is based on open sets of the fafitx) =
{y : y — x} and the preorder relation — y betweenX’s points can be literally interpreted as
“the constant sequence (x) converges to ¥ ir(Sorkin, 1991). For instance, continuous maps on
the preordertopological space are exactly the ones that preser@.&. precisely the maps that
preserve the convergence of the aforesaid sequences!).

35Recall that a partial order is a preorder that is also antisymmetricxi-e. §/) A (y — X) = x = .
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X (Sorkin, 1991) P(l4), we will henceforth refer to as “finitary topological poset”
(fintoposet) (Raptis, 2000a).

3.2. Cech—Alexandrov Nerves: Finitary Simplicial Complexes

In this subsection we present the fintoposets obtained by Sorkin’s algo-
rithm above from a homological perspective, that is, as simplicial complexes.
This presentation is based on a well known construction d@@etth (Eilenberg
and Steenrod, 1952) and Alexandrov (1956, 1961), usually coined “the nerve-
skeletonization of a topological manifold relative to an open cover of it'—the
particular case of interest here being the nerve of a locally finite open covéring
of X.3¢ Thus, an appropriate denomination for the relevant homology theory, also
in keeping with the jargon of the fintoposet-discretization§bmanifolds due to
Sorkin, would be €Eech—Alexandrov finitary homology’.

The specific approach to the simplicial decompositions of topological mani-
folds due toCech—Alexandrov to be presented below is taken mainly from Raptis
and Zapatrin (2000, 2001). In order to be able to apply concepts of simplicial
homology to posets like the the fintoposets of the previous subsection, we give a
relatively nonstandard definition of simplicial complexes deriving from the Cech—
Alexandrov nerve construction alluded to above that effectively views them as
posets. Such a definition will also come in handy in our presentation of the dual
finitary-algebraic cohomological theory in the next subsection.

Thus, we first recall that the nerv§ of a (finitary) open covet/ of the
bounded regioX of ac®-manifoldM is the simplicial complex having for vertices
the elements df (i.e. the covering open sets) and for simplices subsets of vertices
with nonempty intersections. In particular, big-gimplexkC in A" one understands
the following set of nontrivially intersecting vertic§dy, . .., Uk}

K={Uy...,UdeN & UnUiN---NUg#£0 (6)

Now, the nerve\ of a (locally finite) open covet/ of X, being a simplicial
complex, can also be viewed as a poBet-much like in the sense of Sorkin
discussed in the previous subsectioi.he points ofP are the simplices of the
complex\V, and the partial order arrows$" are drawn according to the following
simplicial “face rule”

p — q < pis aface ofy (7

36The reader can also refer to Dugundji (1966) for a nice introduction to the homological nerve
construction.

3"Hence our use of the same syml#dlfor the (finto) posets involved in both poset constructions.
Indicatively, we just note in this respect that the bas{g) involved in Sorkin’s algorithm is nothing
else but the nerve simplex afin ¢/ (i.e. the open set—the smallest, in fact—in the subtopology
T (U) of X obtained by the intersection of all thks inl/ that coverx—the latter collection, in case
k open subsets oX in U/ containx, being ak-simplex in the sense described above).
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Asin Zapatrin (1998, to appear) and Raptis and Zapatrin (2000, 2001), we note
that in the nondegenerate cases, the posets associated witeeheAlexandrov
simplicial nerves and those derived from Sorkin’s algorithm are the same. We have
chosen the homological path of nerves because their specific algebraic structure
will make it possible to build the dual algebraic theory for Sorkin’s fintoposets via
their so-called incidence Rota algebras in the next subsection. Inturn, the latter will
enable us to catch glimpses of important for our study here finitary differential and
cohomological attributes that these algebras (and the finsheaves thereof) possess
(Mallios and Raptis, 2001; Raptis, 2000; Raptis and Zapatrin, 2001; Zapatrin, to
appeatr).

3.3. The “Gelfand Dual” Algebraic Theory: Cech—Type of Cohomology on
Finitary Spacetime Sheaves of Incidence Algebras

Our casting Sorkin’s fintoposets in homological terms, that is, as simplicial
complexes, will prove its worth in this subsection.

First, we recall from Zapatrin (1998), Raptis and Zapatrin (2000, 2001), Raptis
(2000a), and Mallios and Raptis (2001) how to pass to algebraic objects dual to
those finitary simplicial complexes. Such finite dimensional algebras are called
incidence algebras and, in the context of enumerative combinatorics (Stanley,
1986), they were first championed by Rota (1988).

With every fintoposeP its incidence Rota algebf(P) can be associated, as
follows: first represent the arrows— q in P in the Dirac operator (i.e. ket-bra)
notation as p)(q|. Then define2(P), as a (finite dimensionall-linear space,
by Q@(P) := span{|p)(al : p— g € P}, and subsequently convert it to a non-
abelianC-algebra by requiring closure under the following noncommutative poset-
categorical (semigroup) arrow product

Ipal- sl = Ipainys = @i tpiisi = {17 TZE @)

which closes and is associative precisely because of the transitivity of the partial
order “="in P.

Using the fact that Sorkin’s fintoposets are simplicial complexes naturally
characterized by a positive integer-valued grade or degree (or even homological
dimension (Zapatrin, to appe#), one can easily show that the corresponding
Q(P)s areZ.-graded linear spaceRaptis and Zapatrin, 2000; Zapatrin, to ap-
pear). With respect to this grading th&(P) splits into the following direct sum

38For a beautiful introduction to incidence algebras, especially those associated with locally finite
posets that are of particular interest to us here, the reader is referred to (O’'Donnell and Spiegel,
1997).

39 Actually, the homological dimension of a simplicial complex equals to its degree minus one.
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of vectors subspaces
oP) =P o =eQ'® - =AaR (9)

i€Z,

with A := Q° = span.{|p)(p|} a commutative subalgebra & P) consisting of
its grade zero element3andR = ;. , Q' a linear subspace @t(P) spanned
over theC by elements of grade greater than or equal to one.

The crucial fact is that the correspondeite> Q(P) is the object-wise part
of acontravariant functofrom the category3 of fintoposets and order morphisms
(i.e. “fincontinuous” or “>"-monotone maps (Sorkin, 199H)to the categoryr
of incidence algebras and algebra homomorphisms (Zapatrin, to affpéians
it is a categorical sort of duality. In fact, the verge&lfand spatializatiohpro-
cedure employed in Zapatrin (to appear), Breslav and Partionov (1999), Raptis
and Zapatrin (2000), and Raptis (2000a) in order to assign a topology onto the
(primitive spectra consisting of kernels of equivalence classes of irreducible rep-
resentations of the(P)s in such a way that they al@cally homeomorphito the
fintoposetsP from which they were derivéél (Mallios and Raptis 2001; Raptis
2001a) was essentially based on this categorical duality between fintoposets and
their incidence algebras. From now on we will refer to it &effand duality.

It is also precisely due to the Gelfand duality betwgkandi that Zapatrin
was able to first develop a souhdmologicatheory for fintoposets or their equiv-
alentCech—Alexandrov nerves i3, and then to translate it to@homological
theory for their corresponding incidence algebrafiifZapatrin, to appear). For
instance, a Cartan-dfiler-type of nilpotent differential operatar—arguablythe
operator to initiate a cohomological treatment of $H{é)s in)Ai—was constructed
(implicitly by using the Gelfand duality) from a suitable finitary version of the ho-
mological border (boundary)and coborder (coboundar§) operators acting on
the objects ofp3.

Indeed, with the definition ofi one can straightforwardly see that the
Q(P)s in (9) areA-modules of_ -graded discrete differential form®&aptis and
Zapatrin, 2000, 2001; Zapatrin, to appear), otherwise knowdissete differ-
ential manifolds(Dimakis et al, 1995; Dimakis and Miler-Hoissen 1999). In
particular,Q(P)’s abelian subalgebra consisting of scalar-like quantifles; Q°,

40 Again, we read from Raptis and Zapatrin (2000, 2000a), and Zapatrin (to appear) that this abelian
subalgebra is symbolized hy, but in this study, as also alluded to in the previous section, we
reserve this symbol for the spin-Lorentzian connections, and rathek f@esuch algebras (antl
for sheaves of them).

“10r its equivalent category consisting of simplicial complexes and simplicial maps. In Raptis (2001)
P was coined “the Alexandrov—Sorkin poset category.” Here we mayCatth's contribution to it
and call it “theCech—Alexandrov—Sorkin category.”

42|n Raptis (2001fR was called “the Rota—Zapatrin category.

43The reader should keep this remark in mind for what follows.
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corresponds to a reticular version of the algeb€a®(X) of C-valued smooth
coordinates of the classical manifold’s point events, while its linear subspace
over A to a discrete version of the gradéeébimodule of differential forms cotan-
gent to every point of the classical (compl&f-smooth manifold (Raptis and
Zapatrin, 2000}¥* The action ofd is to effect transitions between the linear sub-
spaces? of Q(P)in (9), as followsd: Q' — Q'** (Breslav, 2000; Dimakist al.,
1995; Dimakis and Mller-Hoissen, 1999; Mallios and Raptis, 2001; Raptis and
Zapatrin, 2000; Zapatrin, to appear). All in all, the bonus from studying the finite
dimensional incidence algebraic (cohomological) objecf® imhich are Gelfand
dual to the fintoposet/simplicial complex (homological) object&its that the
former encode information, in an inherently discrete guise, not only about the
continuous-topological (i.e. thé®) structure of the classical spacetime manifold
like their dual correspondengin B3 do (Sorkin, 1991), but also about its differ-
ential (i.e. thec>) structure (Mallios and Raptis, 2001; Raptis and Zapatrin, 2000,
2001).

Furthermore, now that we have a sort of exterior derivative opetatar
our hands, all that we need to actually commence a finiﬁﬁgh—type of sheaf-
cohomological study of our reticular-algebraic structures is to organize the inci-
dence algebras into algebra sheaves and then apply to the latter ideas, techniques
and results form Mallios” ADG (Mallios, 1998a,b). To this end, we first recall
briefly the notion offinitary spacetime sheavéfinsheaves) from Raptis (2000b)
and then the finsheaves of incidence algebras from Mallios and Raptis (2001).

In Raptis (2000b), finsheaves@-observables of the continuous topology of
a bounded regioiX of a topological spacetime manifold were defined as function
spaces that arecally homeomorpht€ to the base fintoposet substitutes of the
locally Euclidean manifold topology of thus, technically speakingheavesver
them (Mallios, 1998a,b). Subsequently in Mallios and Raptis (2001), the %talks
of thoseC°-finsheaves were endowed with further algebraic structure in a way that
this extra structure respects the horizontal (local) “fincontinuity” (i.e. the finitary
topology) of the base fintoposets—thus, ultimately, it respects the sheaf structure
itself (Mallios, 1998a,b).

More specifically, finsheaves of incidence Rota algebras over Sorkin’s fin-
toposets were defined in Mallios and Raptis (2001). We may symbolize these by
Q(P) and, as said before, omit the finitary base topological sgadeom its
argument unless we would like to comment on it. Incidence alge@rdsvell

443ee also Breslav and Zapatrin (2000).

45see discussion around footnote 43.

46The stalk of a sheaf is more-or-less analogous to the fiber space of a fiber bundle—it s the point-wise
(relative to the topological base space on which the sheaf is soldered) local structure of the sheaf
space. For instance, as a nontopologized set, a sheaf S over a topologica{ s§6%¢, carries the
discrete topology of its stalks point-wise ov¥r as S(X) = ®xexSi, WhereS; are its stalks and
the direct sum sign may also be thought of as the disjoint union operation.
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in the stalks of©2 and the (germs of continuous) sections of the Ié&ttarherit
the algebraic structure of th@s for, after all, ‘a sheaf(of whatever algebraic
objects)is its sections(Mallios, 1998a,b¥. Furthermored lifts in 2 to effect
transitions between &, -graded' vector subsheaves, in the following manner:
da: Q- Qi

For the finsheaf-cohomological aspirations of this study we note that the
triplet 7 := (Pm, Qm, 4)* is a finitary version of the classical (i.6>°-smooth)
differential triad 7., = (X, £ = ©Qc, d)*®°; whereX is a (bounded region of a)
paracompact Hausdorf-smooth manifoldVl, ©Qc is the sheaf of., -graded
modules of Cartan® (complex?) smooth (exterior) differential forms, adds the
usual nilpotent Cartan-diler (exterior) differential operator effecting (sub)sheaf
morphisms of the fornd : Q' — Q'+1 (Mallios and Raptis, 200F}.

In connection with the penultimate footnote, however, we note that built into
the classical differential triad, is the classical*°-smooth C-algebraized space
(X, A = €C>°(X)) over whoseA-structure sheaf's objects (i.e. the algebras of
C-valuedC*>-smooth functions oiX) the Cartan forms in the differential modules
Q' superposé In fact, we emphasize from (Mallios, 1998a,b) that the entire
differential calculus on smooth manifolds (i.e. the so-called “classical differential
geometry”) is based on the assumptiontot= €C>°(X) for structure sheaf of
coordinates oc-coefficient8® of the relevant differential triad, so that ADG's
power of abstracting and generalizing the classical calculus on smooth manifolds

4"The germs of continuous sections of a sh&4dy definition take values in its stalks.

“8This gives a pivotal role to the notion of “section of a sheaf” in Mallios” ADG, as we will also
witness in the sequel.

49The subscriptfn” is the so-called “finitarity or resolution index” and its (physical) meaning can be
obtained directly from (Mallios and Raptis, 2001; Raptis, 2000b; Sorkin, 1991). We will use it in
Section 5.

50 As we also said in the previous footnote, thdt £€c, d) has an infinite resolution index n will be
explained in Section 5.

51Hence the subscripC” to the sheaf.

52This more or less implies that one should use a complexified marioleM, and its (co)tangent
bundIeTé*) M (Manin (1988); see also Subsection 6.1), but as it was also mentioned in Mallios and
Raptis (2001), here we are not going to deal with tRevérsusC spacetime debate’.

53|nterestingly enough, and in a nonsheaf-theoretic context, Zapatrin (to appear) has coined the general
triple D = (R, A, d)—whereS2 is a graded algebrad = Q° an abelian subalgebra & and d a
Kahler-type of differential—“a differential modute over the basic algebtd.” The correspondence
with our (fin)sheaf-theoretic differential triads above is immediate: the latter are simply (fin)sheaves
of D in the sense of Zapatrin. Moreover, sintés nilpotent and we can identify in the manner
of Raptis—Zapatrin (2000, 2001) and Zapatrin (to appefr}= 9 : Q0 — Q! (see 1), as well as
dl=d!: @' - Q2 andd? =d? : Q2 — 5, then the following relations are also satisfied in
the finitary regimed?* o d° = 0 = d? o d*—a crucial condition for the exactness of the de Rham
complex in (1) (Mallios, 1998a,b).

54The reader should refresh her memory about all these technical terms borrowed from ADG (Mallios,
1998a,b) by referring back to Subsection 3.1.

55See subsection 2.1.
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basically lies in the possibility of assuming other more general or “exotic” (in fact,
possibly more singular!) coordinates (i.e. local sections of more general abelian
c-coefficient structure sheavég while at the same time retainirjmost all of

the innate (algebraic) mechanism and techniques of classical differential geometry
on smooth manifolds. All this was anticipated in Section 1.

Before we engage into some “hard col@éch-de Rham-type of finsheaf-
cohomology on the objects inhabiting the stalks of the vector, algebra, and dif-
ferential module sheaves in the finitary differential trizgl in the next section,
we make brief comments on the base topological sp&gasvolved in theZs.

These are Sorkin’s fintoposets and they are perfectly legitimate and admissible
topological spaces on which to localize the vector, algebra, and module sheaves
of our particular interest and, more importantly, to perform differential geometry
ala ADG. For as we emphasized in Section 2, ADG is of such generality, and its
concepts, constructions, and results of such a wide scope and applicabiliiy, that
principle it admits any topological space for base space on which to solder the
relevant sheaves and carry out differential geometry on tfidailios, 1998a,b).

For example, we recall the second author’s early anticipation at the end of Raptis
(2000b) (where finsheaves had just been defined!) that if one relaxed the two basic
assumptions gbaracompactnessndHausdorffnesgor T,-nes$&?) of ADG about

the topological character of the base spaces admissible by thethteorglative
compactnes8 andT;-nes8®—which are precisely the two essential conditions on
theC®-manifold X from which fintoposet®,, were derived by Sorkin’s algorithm

in Sorkin (1991), then ideas of ADG could still apply to finsheaves (of whatever
algebraic structures) over them. This is indeed so and, as the reader must have
already noticed, it is significantly exploited in the present work.

4. FINITARY CECH-DE RHAM SHEAF-COHOMOLOGY

This section is the nucleus of this paper. Based on an abstract version of the
classical de Rham theorem@fy-smooth manifolds, we entertain the possibility of
a nontrivial de Rham complex on our finitary differential triag = (P, 2m, d).
Thus, we particularize the abstract case (Mallios, 1998a,b) to our finitary regime.

56The reader may now wish to recall that a topological spéi®said to be Hausdorff, or satisfying
the T, axiom of separation of point set topology, if for every pair of distinct pokrdsdy in it, there
exist disjoint open neighborhood3(x) andO(y) about them (i.eO(x) N O(y) = ¥) (Dugundii,
1966).

57See Section 2.

58 A topological spac is called relatively compact if it is finitary in Sorkin's sense in (Sorkin, 1991)
(i.e. if it admits a locally finite open cover or frarbg).

59The reader may now like to recall that a topological spXcis said to beTy, or satisfying the
first axiom of separation of point set topology, if for every pair¥) of points in itboth possess
open neighborhoods about them that do not include each other pointé,(j.e X, 30(x), and
O(y) : y & O(x) andx ¢ O(y)) (Dugundji, 1966).
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4.1. The Abstract de Rham Complex and its Theorem

In connection with the (injectivej-resolution of an abstract (differential)
A-module sheaf expressions (2) and (3) of Section 2, we recall from (Mallios,
1998a,b) that thath cohomology group of a\-module sheaE(X), H"(X, &),
can be defined via its global sectiofig(£) = I'(X, &) as follows

H(X, €) := R'[(X, &) := h"[['(X, S)] : = kerl'x(d")/imx(d""%) (10)
whereR"T" is thenth right derived functor of the global section funciok(-) =
(X, .).s

Correspondingly, the abstradtcomplexS™ defined by the resolution in (2)
can be directly translated by the functidgk to the “global sectiom\-complex”
I'x(S)

I'x(d% Ix(dh

I'x(S) : T'x(0) — I'x(S%) — I'x(8h) —
FX(d ™ r (Sn l) Ix(d") FX(S”) _ ...

which depicts the departure of tledifferential module sheaves in it from being
exact (i.e. the non-triviality of thé\(X)-complexI'x(S’)) (Mallios, 1998a,b}*
We coinl'x(S°) “the abstract de Rham compl€ADC). We emphasize again that
I'x(S) is nothing more than the “section-wise analogue” of the abstract cochain
complex ofC-vector space sheaves afidinear morphismsl' between them that
we encountered first in expression (1) and subsequently in (2) afd (3).

The ADC is the main ingredient in the expression of the abstract de Rham
theorem (ADT), which states, in a nutshell, thahe¢ (sheaf) cohomology of
a topological space X, with “coefficients” in some she&afof A-modules or,
more generally, of abelian group$,that one of a certain particulaf-complex
(canonically) associated with the given shed&f, more precisely, the said

11)

60|t is rather obvious that throughout the present paper we are working in the ca®goty of
sheaves (of arbitrary algebraic structures—in particular, complex differefiabdules) overX,
and the functof"x acts on its sheaves and the sheaf morphisms between them (in particular, on the
differential sheaf morphisnt' ; see (11) below).

61The reader should note here that the abstract sheaf-cohomology advocated in ADG is principally
concerned, vid'x, with the sections of the sheaves involved, thus vindicating and further exploiting
the populamottostated in Subsection 3.3 that “a sheafis its sections” (see discussion around footnote
48). Thus, in connection with the philosophy of ADG (subsection 2Bt is of importance for
ADG is more the algebraic structure of the “objects” living on “space (time)” —which algebraic
structure, in turn, is conveniently captured by the corresponding algebraic relations between the
sections of the respective sheaves—rather than the underlying geometric base space (time) itself.
We would like to thank the two Russian editors of Mallios (1998a), professors V. A. Lyubetsky
and A. V. Zarelua, for making clear and explicit in their preface to the Russian edition of the book
how ADG deals directly with the geometrical objects that live on ‘space’, thus undermining the
(physical) significance of that geometric background space (time), and also how this may be of
importance to current research in theoretical physics.

62|n Mallios (1998a,b) for instance, the ADC in (1) was coined “the abstract de Rham comptex of
relative to the differential triadX, Q'(A), d = 9).
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cohomology is, in factthe cohomology of any'x-acyclic resolution of£¢3”
(Mallios, 1998a,b).

The abstract character of both the ADC and of the ADT that it supports
consists in there being generalizations of the u§&akmooth de Rham complex
and its theorem. The reader may like to recall that the classical de Rham theorem
(CDT)%* which refers to th€ech cohomology of a paracompact. Hausdorft
smooth manifoldX, pertains to the cohomology offg¢-acyclic resolution of the
constant shed provided by the standard de Rham complex, which we bring forth
from (1) in a slightly different form

Qe 0—cex) =L ot Lol o0 12

which complex, wherC-enriched?® provides the following exact sequence of
C-vector sheaves oK

QX 0—C—cX)=020-% ot Lo L. oo
(13)
with n the dimensionality of the bagE°-manifold X.

It is well known of course that the CDT is rooted on the lemma of Poicar”
which holds thatevery closed’*-form on X is exaet-this statement always
being true at least locally (i.&J-wise) in X. Also, we just remark here that the
acyclicity of I'x in (12) is secured by the fact that the coordinate structure sheaf
A = Q0 =CC>®(X)is fine onX.5

63The epithet “acyclic” pertaining, of course, to the nonexactness of the ADC and the associated
non-triviality of its respective cohomology groupt™(X, S"), as described above. The abstract
nature of the ADT consists in that, effectively, the fundigr can be substituted bgny covariant
(left exact)A(X)-linear functor orSh(X).

64The “C” in front of CDT could also stand for “(c)oncrete,” as opposed to the “A” (for (a)bstract) in
front of ADC and its ADT.

65Recall that C is the constant sheaf of the complex numBess X. Also, the superscriptso” to
Qyerreflects that we are dealing with the classi€al-smooth case (i.e. the case of infinite finitarity
or resolution index (Mallios and Raptis, 2001; Raptis, 2000b).

66We may recall from Strooker (1978) or Mallios (1998a) that a sleiafsaid to be fine if for every
locally finite open covering (or every choice of coordinatizing local gauges) {U; } of X there is
a collection of (endo)morphism§ : S — S, such that (i, | fi| :={xe X : (fi)x #0} C Y;
and (ii) >; fi = 1 (partition of unity). The fineness of our finsheaves is implicitly secured by their
construction in Raptis (2000b) and Mallios and Raptis (2001), since, as we mentioned earlier, the
regionX of aC*-manifoldM considered there was assumed to be relatively compact (i.e. bounded)
(Sorkin, 1991), as well as that it admitted locally finite open covertfighiencejn extensofor all
practical purposes and without loss of any generality in the construction, one could assume up-front
that X is, in fact, paracompactThe latter assumption would then immediately secure (ii) above
(i.e. “partition of unity”) (Mallios, 1998a). Then, condition (i) would also be satisfied sievety
paracompact space is nornigDieudonrg) (Bourbaki, 1967; Dugundji, 1966), and “normality”
for a topological space entails thetery locally finite open covering of it admits a “shrinking,’
“precise” refinement(Dugundji, 1966; Mallios, 1998a). Now that we have establishedmﬁats
fine, so are the finsheaves of graded modules of differentials over it (Mallios, 1998a). The fineness
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We conclude this subsection by making the well known remark a¢ha
paracompact F-space, sheaf-cohomology coincides with the stan@ach co-
homology and we add that it is precisely this fact, aided by the finitary-algebraic
discretizations of’°-manifoldsa la Cech—Alexandrov-Sorkin-Zapatrin, the fin-
sheaves thereof (Mallios and Raptis, 2001; Raptis, 2000b) and the broad sheaf-
cohomological ideas of ADG, which technically conspired towards the conception
of the finitary Cech-de Rham cohomology presented here. We are now in a position
to present the finitary de Rham complex (FDC) and theorem (FDT).

4.2. The Finitary de Rham Complex and Theorem

We simply write the following FDA = Q2 -compleX” for the finitary differ-
ential triad7y, : = (Pm, 2m, d) defined in the penultimate subsection

on 00— Lol Lo S a0 (14
and itsC-enriched version
om:0—Cc— Lo L2 4% Lo 0 (@5)

Both (14) and (15) depict the exactness of the finitary de Rham corfjlexvhose
I'p -acyclicity is secured by the fact that tfi, -module sheave®;, involved in
it are in fact fine by construction (Mallios and Raptis, 2001; Raptis, 2080bhis
is essentially the content of the FDT.

As it was remarked at the end of Subsection 2.2, here we will argue that the
complexin (15) above (i.e. the finitary version of the abstract de Rham complexin
(1)) is actually exact, thus, in effect, that the usual de Rham theory of differential
forms onC*>-manifolds is still in force in the locally finite regime (and not merely
to be taken as an axiom as (a) in Section 2.2 wquicha facieseem to imply).

Our argument is an “inverse” one as we explain below.

We consider a bounded regict of a C*°-smooth manifoldM for which
the CDT is assumed to hold. Then we employ a locally finite open gauge sys-
temUy, in the sense of Sorkin (1991) to chart (coordinatiXe)Relative tolm,
as we mentioned in Subsection 2.1, we extract by Sorkin’s algorithm the finto-
posetPy (Sorkin, 1991) and we build the finshe@f, (Raptis, 2000b) of inci-
dence algebraQn, over it, Qn(Pqy), as in Mallios and Raptis (2001). Then, we

of these finsheaves will play a central role in establishing the acyclicity of the correspdnging
functor on the finitary de Rham complex in the next subsection.

67We refresh the reader’s memory by noting that the subsamiptiere is the finitarity or resolution
index.

68 See footnote 66.

89That is, that the finitary simpliciaCech cohomology of théns is expressible in terms of the
reticular differential form€2p, living on them.
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know from Sorkin (1991) that the fintoposets form an inverse or projective sys-
tem (Solian, 1977) poset category (nét):= (Pm, =), consisting of them and
refinement partial order-preserving arrowdetween them, and which possesses
an inverse or projective limit spade,, = lim Py, that is homeomorphic tX as

oo < m. Since theQ,s are (catergorically) dual objects to tRgs as mentioned

in Subsection 2.3 (Raptis and Zapatrin, 2000,2001; Zapatrin, 1998, to appear),
they form a direct or inductive system (Solian, 1977) (again a poset category)
N':= (Qm, <) consisting of the finite dimensional incidence Rota algelstas
associated with the fintopose®s, in % and injective algebra homomorphisms
between them. Since tl§g,s are discreté&-graded discrete differential manifolds,

as it has been extensively argued in (Mallios and Raptis, 2001; Raptis and Zapa-
trin, 2000, 2001)’,\1 possesses an inductive limit spa@g, = lim 2, asm — oo,

that is diffeomorphic to th€>-smooth regionX of the C>-manifold M (Raptis

and Zapatrin 2000, 2001; Zapatrin, to appear). The latter effectively means that at
the limit of infinite refinement of the topologies, generated by (or having for
bases) thé/ys, the inductive systerf{ yields the Cartan spaces of differential
forms cotangent to every point of tlig°-smooth X (Raptis and Zapatrin, 2000,
2001).

Now, our aforesaid “inverse” argument for the exactness of the finitary de
Rham complex in (15) is based on the result thaRtiam exactness is preserved
under inductive refinemefitsince the underlying locally finite open coveéfsg of
Sorkin may be regarded as being “good” (Bott and Tu, 1981), still by providing
a cofinal systenin the class of open coverings &. Thus, since the exactness
of the de Rham complex is assumed to hold for the inductive limit spgce
it also holds for the finsheaveR,, of reticular differential forms soldered on
Sorkin's Pys. It must be also mentioned here that, as one would expect, Pe@mscar’
lemma holds locally for every contractiblé in U/, and, in particular, for every
contractible elementary (") cell A(x) covering every poink of X (see (4))*
thus it also holds locally in everlp,, of Sorkin by their very construction (Sorkin,
1991).

We close this subsection by noting that adding to the corresponding differen-
tial triads, 7T, and 7, their respective de Rham complexesi; andQjis, one
obtains the followindinsheaf-cohomology differential tetratts

e C*-Smooth (Classical)T = (X, ©, d, Q3

These definitions and the discussion preceding them bring us to the following
classicalC*-limit construction.

700r equivalently, thathe inductive limit functor is exa¢Bolian, 1977).

"IRecall thatA (x) is the smallest open set in the subtopold@gyof X generated by the contractible
open setd) in Unm.

72From now on this will be referred to as “fintetrad”.
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5. CLASSICAL C*°-LIMIT CONSTRUCTION: RECOVERING THE = C*°-
SMOOTH CECH-DE RHAM COMPLEX

The contents of the present section are effectively encoded in the following
“commutative categorical limit diagram”

mt=g - di
fIm »L(l/) flm ~L(2/) flm \L(3,)
T =Sm _ 4 ~m
Ty S g e
oo 4(4) fiee 45)  finoo L(6)
H’IES

iMoo P = Pao 2 COX) == iM s 00 2 = 2 2 1 A [C2(X)] —> Q5%

(5) (6)

which we explain arrow-wise below

(a) Arrows (1) and (3): The two horizontal arrows (1) and (3) depictdbal

(b)

(©

(d)

homeomorphisrfinsheaf maps ands;, inverse to their corresponding
projection mapsr andry,, from the fintoposet base topological spaces
R and Py, with finitarity indices ‘1” and “m”, to their respective finsheaf
spacesS; andSy, (Raptis, 2000b). In turn, as it was shown in (Mallios
and Raptis, 2001), the latter can be identified with the finshe@Qvasd

Q2 of the incidence Rota algebr&s(P) and2m(Pr).

Arrows (2) and (4): The two horizontal arrows (2) and (4) represent the
Cartan—Kdhler-like differential operatokg andd,, which, as said earlier,
effect graded subfinsheaf morphisms,: Q] — Q! anddy, : Q] —
Q‘nfl, within their respective finitary de Rham finsheaf-cohomological
complexes2 g andne.

Arrows (1) and (2): The two vertical arrows () and (2) represent con-
tinuous injections, interpreted as topological refinements, between the
fintoposetskh and Py, (R < Phe fim @ B — Py) (Sorkin, 1991) and
their corresponding finsheaves and S, (S 28me fim 1 S — Sm)
(Raptis, 2000b). That a continuous injectiGp (P < Py) lifts to a simi-

lar continuous into maghm (S XSm) between the finsheaf spaces over the
base fintoposet§ andPy, is nicely encoded in the commutative diagram
defined by the arrows [(1)-(2 (1')—(3)] above.

Arrow (3): The arrowfin, represents a functor carrying (sub)sheaves and
theird;-morphisms in the fintetr&#, to their counterparts in the fintetrad
Tm. In complete analogy with;, and ﬂm above, we may represent the
corresponding functorial refinement relatip, betweers, and<y, as

T <%
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(e) Arrows (4) and (8): The two arrowsf,,, and freo, as the diagram
symbolically depicts, are the maximal refinements obtained by subject-
ing the inverse or projective systems (or net§)= (P, fim ==) and
N = (Sm = O, fim = X) to the inverse limit (categorical limit) of
maximum (infinite) refinement (or localization! (Mallios and Raptis,
2001; Raptis, 2000b)) of the base fintoposets (Sorkin, 1991) and their cor-
responding finsheaves (Raptis, 2000b) of incidence algebras (Mallios and
Raptis, 2001) (i.e. formally, as the refinement or resolution index goes to
infinity “m — oo”, vyielding: limy_ Pm= Psx =~ C%X) (Raptis,
2000b; Raptis and Zapatrin, 2000; Sorkin, 1991) and,lim Qmn =
Q. =" A[°C>®(X)]) (Mallios and Raptis, 2001; Raptis and Zapatrin,
2000)72

(f) Arrow (6): The arrow (6) expresses the “convergence,” at the limit of
infinite resolution, of a netV := (2R <) of finitary de Rham sheaf-
cochain complexes and their injective functdyg to the classical’*-
smooth de Rham comple® 5.7 This inverse limit convergence is in
complete analogy to the projective limit convergencesrecalled in (f) above
from (Mallios and Raptis, 2001; Raptis 2000b; Raptis and Zapatrin, 2000;
Sorkin, 1991).

(g) Arrows (5) and (6): Arrow (5) can be thought of as some kind of “in-
jection” or “embedding” of ac®-manifold into aC>-one (i.e. the well
known fact in the usual Calculus thdifferentiability implies continu-
ity, or equivalently, that everg*>-differential manifold is afortiori a
Co—topological oné), while the arrow (6) depicts the inclusion of the
sheaves' of smooth complexXZ, -graded differential forms into the
smooth de Rham compleR 3y in its corresponding classical sheafco-
homological differential tetrad .

After having recovered the usual classical differential geométfiesmooth
structures from our reticular-algebraic substrata, we intend to initiate, at least, a
sheafcohomological classificatiaia ADG of the nontrivial (i.e. nonflat) finitary

73The reader should note above thidtand A are the projective and inductive systeﬁﬁsandﬁf
mentioned in the previous section, respectively. Only for notational convenience we used the same
limit symbols “limn_ " (and the same refinement relatiog$ for both the inverse and the direct
limit convergence processesM = /_‘f andXN = /_\{ respectively.

74Equivalently, and in view ofd) above, one may think of the projective syste}‘nas consisting of
fintetrads¥ <-nested by the functorial injectiorf$, and converging at infinite refinement to the
C-smooth sheaf-cohomological differential tetfad, .

“5In our finitary context, all this is just to say that the incidence algebras associated with Sorkin’s
fintoposets, as well as their finsheaves, encode discrete information not only about the topological
structure of “spacetime”, but also about its differentiable properties (Breslav and Zapatrin, 2000;
Mallios and Raptis, 2001; Raptis, 2001a; Raptis and Zapatrin, 2000, 2001; Zapatrin, 1998, to
appear).
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spin-Lorentzian connectiond, that were introduced and studied in Mallios and
Raptis (2001). Such a possibility for classifying the spin-Lorentzian connection
fields A, would amount to an effective transcription to an inherently finitary and
quantal gravitational model (Mallios and Raptis, 2001) of the analogous means
(i.e. techniques) and results (i.e. theorems) for classifying smooth (i.e. classical)
Maxwell fields (Mallios, 1998a,b; Selesnick, 1983).

6. THE ABSTRACT WEIL INTEGRALITY AND CHERN-WEIL
THEOREMS: TOWARDS A SHEAF-COHOMOLOGICAL
CLASSIFICATION OF FINITARY SPIN-LORENTZIAN
CONNECTIONS A,

As noted above, in this section we will attempt to emulate in a finsheaf-
cohomological setting what is done in the classi€&l-smooth theory and en-
tertain the possibility of assigning a cohomology class to any reticular “closed
n-form’'—in particular, to the (curvatures of the) finitary spin-Lorentzian 1-forms
Am—dwelling in the relevant finsheaves in their respective fintetfad<Of great
importance in such an endeavor is on the one hand ADG’s achievement of for-
mulating abstract versions of both Weil's integrality theorem (WIT) and of the
Chern—Weil theorem (CWT) of the usual differential geometry on smooth mani-
folds (Mallios, 1998a,b), and on the other their possible transcription to the more
concrete finitary-algebraic regime of particular interest here, for it is well known
that both theorems lie at the heart of the theory of characteristic classes of classical
C*-smooth vector bundles and sheaves. We only translate them to our finitary-
algebraic setting and, we emphasize once more, it is precisely the abstract and
quite universal character of ADG that allows us to do this. However, before we
present the aforesaid two theorems and their finitary versions, let us briefly inform
the reader about how ADG defines and deals with “generalized differentials.” that
is to sayconnectionsas well as how the latter were applied to the reticular finsheaf
models in (Mallios and Raptis, 2001).

6.1. A Brief Reminder of Nontrivial Finitary A-connections.An,

Let us recall from (Mallios, 1998a,b) some basic sheaf-theoretic facts about
abstract and generalconnections before we delve into the the particular finitary
case of interest here.

Let (A, 2, 9) be a differential triad consisting, as usual, of the (commutative)
C-algebra structure sheaf(of “generalized coordinates”), the sh&abf complex
A-modulesQ (of differential forms), and the C-derivation operatgrwhich is
defined as aheaf morphism

9:A—Q (16)
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which is also

(i) C-linear betweer\ and(? viewed asC-vector sheaves, and
(i) it satisfies Leibniz’s product rule

d(s-t)=s-0t+0s-t a7)

which, in view of (i), implies that for everg in the constant sheaf G = 0, or
equivalently written a8 | ¢ = 0.”® We also note that is no other than the arrow
d%in (1) which extends to the higher gradi > 1) sheaf morphisms in (1) when
the Qs in the sheaf? areZ -graded differential modules (defining thus graded
subsheave®' of Q).

What it must be emphasized at this point, because it lies at the heart of ADG’s
sheaf-theoretic approach to differential geometry,ahl€¥'s fundamental insight
that

every abelian unital ring admits a derivation map ag1%) (Mallios, 1998a,b), hence
it qualifies ADG asa purely algebraic picture of differential calculasone without any
essential dependence on a “background geometrical space(fime)'.

For the particular finitary application of ADG here, and as it was also strongly
stressed in (Mallios and Raptis, 2001), the finsheaves of incidence algebras—
which effectively are ringlike structures (O’ Donnell and Spiegel, 1997)—naturally
admit generalized derivations (viz. connections; see below) in the spirialoleK”
quite independently of the character of the geometric base space on which these
rings are localized. This algebraic conception of derivation or connection is more in
line with Leibniz’s relational intuition of this structure, rather than with Newton’s
more spatial or geometrical orie.

Now, in ADG the abstraction and generalization of the C-derivatiabove
to the notion of a (nontrivid) A-connectiorD is accomplished in the following

760f course, it is understood that the objeci$&nd “t” involved in (17) are (global) sections df.

“TFor more on this see Sections 1 and 8.

"8We can briefly qualify this as follows: one may recall that while Newton advocated a geometric
conception of derivative (e.g. as measuring the slope of the tangent line to the spatial curve, which
represents the graph of the function on which this derivative operator acts), Leibniz propounded
a combinatory-relational (in effecalgebraig notion of derivative—one that invokes no concept
of (static) ambient geometric space, but one that derives from the: (podgidymica) relations
between the objects involved in the relational-algebraic structures in focus. He thus coined his
conception of differential calculus (which he ultimately perceived as a “geometric calcudus’)
combinatorid— combinatorial art In the same spirit, in ADG, with its finitary applications here and
in Mallios and Raptis (2001), derivations and their abstractions-generalizations (viz. connections;
see below) derive from the algebraic structure of the objects (in fact, the sections) living in the
relevant (fin)sheaves (in the present paper, the incidence algebras associated with the relational
fintoposets) and are not the idiosyncracies of any kind of geometric space “out there” whatsoever
(see also footnote 61).

"SThe epithet “nontrivial” here pertains, as we will mention shortly, to a connection whose curvature
is nonzero—commonly known as a “nonflat connection.”
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two steps:

(a) Abstraction: The abstraction 8fto D goes briefly as follows: first, one
assumes as above a differential tridd {2, 9) and anA-module sheaf
on some topological space; then one defines af-connectionD of £,
as a map (in fact, againgheaf morphisin

D:E—ERMAZNDLE =(E) (18)

which again is
(i) a C-linear morphism between the C-vector sheaves involved, and
(ii) it satisfies the Leibniz rule, which now reads

D(p-1) =p-D(t) +t ® D(p) (19)

forany (sectionsp € A(U),t € £(U),withU c X open (e., prop-
erly speakingp € I'(U, A) andt e ' (U, &)).

(b) Generalization: As briefly alluded to in the last footnote, the generalization
of d to D basically rests on the observation made in Mallios (1998a,b) that
the former is a trivialflat connectioff® so that to generalize it means,
effectively, to curve it. In Mallios and Raptis (2001), for instance, the
latter was accomplished byaugingthe relevant (fin)sheaves, gauging
which in turn was formally implemented by locally augmentthgith a
nonzero gauge potential 1-ford,3* as follows:

Formal gaugingd — D = 9 + A% (20)

We thus arrive at how physicists normally interpret a connecices a
covariant derivativewhich is a result of the process géugingor local-
izinga physical structure (and its symmetries) (Mallios and Raptis, 2001).
From the general perspective of a nonflat connediiothe flat case is

a special case recovered exactly by settihg- 0.5 Sheaf-theoretically
speaking, the process of gauging or localizing means essentiallththat
sheaves involved do not admit global sectionsquivalently, and perhaps
more geometrically, the particular coordinate structure algebra ghisaf

80|n a discrete context similar to the finitary one of interest to us here and to the one studied in Mallios
and Raptis (2001), Dimakis anduMér—Hoissen also observed that the nilpotent Cartafriét
derivationd = d is a flat kind of connection (i.e. one whose curvature is zero).

81This entails that the sheaf morphighnin (18) is, in effect, the usual “1-form-valued assignment”:
D : A — Q' c Q—the familiar structure encountered in the standard vector bundle models of
gauge theories. See also below.

82|n fact, at least locallyD is uniquely determined by what physicists call “the vector potentitl”
That is why in Mallios and Raptis (2001) we did not distinguish (at least locally) bet@eand
its nonflat partA.

83But as it was emphasized in Mallios and Raptis (2001), from ADG's perspective (Mallios, 1998a,b),
d is a perfectly legitimate connection; albeit, a flat or trivial one.
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localized relative to the open coordinate local gaudes U/ coveringX
(Mallios, 1998a,b). Our generalized coordinatizations or measurements of
the loci of events inX, as encoded ir\, are localized relative to thds

in U. In turn, on this fact we based a finitary version of the Principle of
Equivalence of general relativity on a smooth manifold and the concomi-
tant curving of the finsheaves of incidence algebras modelling qausets in
Mallios and Raptis (2001). We will return to this subsequently and in the
next sectiorf

We can now make the following three remarks: first, in view of the general-
ization or gauging of the trivial connectia@rin the flat differential triad 4, 2, D),
supporting the (abstract) differential tetrad whose complex is depicted in (1) to the
nonflat connectiorD in the “gauged” or “curved triad’4, €2, D), and with our
present sheaf-cohomological interests in mind, we read from Mallios (1998a,b)
that one can definkigher order cochainprolongation®' (i > 1) of D(= DY),
as follows

Qo) =8 91(5) 2 92(5) 93(5) 2

gl B avye) 2L
which, in view of the fact thaD is nonflat, with nonzero curvatutg defined as
F(D):=D'oD=D?+0,% (22)

are non-exact Thus, the obstruction of th@-cochain in (21) to comprise

(21)

84|t is worth mentioning her that th&-connectionD to which 9 is abstracted and generalized by
(a) and (b) above, is in complete analogy to, and we quote from Kastler (198é)yfost general
notion of linear connectiovV” used in Connes” popular Noncommutative Differential Geometry
(NDG) theory (Connes, 1994). However, the epithet “noncommutative” in Connes” work, and in
contradistinction to the firstauthor's ADG, pertains to also admittimgabeliarstructureC-algebra
sheaves. Also in view of the noncommutative ideas in the context of qausets expounded in (Raptis,
2001a), it would certainly be worthwhile to try to relate Connes” NDG with ADG

85For instance, the first order prolongation®? : A — Qlto D’ : QL&) — Q) is defined by
the relation DU ® v) := u® dv — v A Du; u € EU), v € 21(U), andU open inX. The rest of
theD's in (21) are obtained inductively.

86 From this definition ofF and the definition o above it follows thatF(D) is an A-morphism of
the A-modules involved (i.e. a structure sheaf-preserving morphism) and, in particutsipiam
(i.e. formally: F € Homy (€, Q3(E)) = Homy (€, 22(£))(X), so that where€ is a vector sheaf:
Homy (€, 22(E))(X) = Q%(EndE(X)). Moreover, we read again from Mallios (1998a,b), the cur-
vatureF of an A-connectioriD can be viewed as a 0-cocycle of locak n matrices i = dim¢&)
having for entries local sections 6 (i.e. local 2-forms orX). We will return to this remark in
Section 7.

87\We bring the reader’s attention to the fact that in (2)= A ®, & = Q°(€) (Mallios, 1998a,b).
Also, interestingly enough, this definition of curvature, and in a discrete context similar to ours,
was given in Dimakis and Mler-Hoissen (1999) (see also Mallios and Raptis (2001); moreover,
this very definition for the curvature of at-connection was used by Connes in his NDG (Kastler,
1986; Connes, 1994).
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an exact complex is essentially encoded in the nonvanishing curvatusé
the connectiorD.8 Thus, F(D) represents not only the measure of the depar-
ture from differentiating flatly, but also the deviation from setting up an (ex-
act) cohomology based db—altogether, a measure of the departurédiom
nilpotence.

Second, we note in connection with the aforementioned “section-wise” spirit
in which ADG is developed in (Mallios, 1998a,b) that the ust@&FsmoothA-
connection—the connection of @*°-smooth manifoldX the points of which
are coordinatized and individuated by the coordinate algebras in the structure
sheafA = €C>(X)—acts (as a 1-form) on the sheaf of germs of sections of the
(complexified) tangent bundle of : Tc(X) := T(X) &g C, the latter sections
being, of course, complex vector fields (i.e. first rank contravariant tensors over, that
is to say, with coordinates ifC* (X)) (Manin, 1988; Mallios, 1998a,b; Mallios
and Raptis, 2001). As a matter of fact, the coordinate structure SG&4i) of the
C*°-manifold X is fine, moreover, ever§C*>(X)-module sheaf (or its differential
counterparf2) overitis also fine, hencgcyclic This is reflected in the well known
“existence result” thagveryC*-smooth Cvector bundlgequivalently, Cvector
sheaf on X admits a&*°-connectionMallios, 1998a,b).

The third remark concerns a fundamental difference between a connection
D on a vector sheaf and its associated curvaf(®), which difference, in turn,
bears on a significantly different physical interpretation that these two objects have
in our finitary theory in particular and more generally in ABGWe note that,
while according to the definitions given aba¥erespects or preserves the abelian
algebra structure (arcoefficient) sheak, D does not (e.g. it obeys Leibniz’s rule).
Since in our schem#a representsur (local) measurements or coordinatizations
relative to a (local) coordinate gaugethatwe lay out to cover and measure the
events of whatever virtual geometric base “spaxXeliesuppose to be “out there”
suitable or convenient enough for soldering or localizing our algebraic structures,
F is a geometric object with respect to these measurements or “coordinatization
actions” inA (viz., A essentially encodes the geometry of the background space
(Mallios, 1998a,b))—a kind of A-tensor,” whileD cannot qualify as suct.All
in all, F (i.e. field strength) is what we measure—a geometric object with respect
to our local measurements/gauge coordinate&(M | /) —whenD effectively

88For example, section-wise in the relevant sheavBs o D) (s@t) =t A F(s) with se
I'(U, )t e I(U, 1), andU open inX.

89This difference of interpretation betwe&n and F will come in handy subsequently when we
discuss and wish to interpret the Chern—Weil theorem.

90This is in line with what we said earlier aboft, namely, that it is essentially of algebraic, not
geometric, character. A similar tensor/nontensor distinction is familiar to physicists that, as we
noted earlier, tend to identify connection with the gauge potential.pat D, since, as it is well
known, A transforms nontensorially (i.e. inhomogeneously) under a gauge transformation, while
F obeys a homogeneous, tensorial gauge transformation law.



Finitary Cech-de Rham Cohomology 1885

eludes them as well as the background spéseipporting them (i.e. serving as a
base space for the structure shaaf

Inthe same train of thought, and following the (fin)sheaf-theoretic formulation
of the principle of (general) covariance in Mallios and Raptis (2001), which holds
that the laws of nature are equations between appropriate sheaf morphisms (the
main sheaf morphisms involved being the connection and, more importantly, its
curvature, which, in turn, implies that the laws of Nature are differential equations,
as commonly intuited), we infer théte laws of physics are independent of our
own measurements i, or equivalently, thathey areA-covariant®® Also in this
line of thought, we may re-raise the second question opening this paper in another
manner: Is it really right to say that the laws of physics (e.g. gravity) breakdown at
singularities if the latter are diseases that assail our own coordinate algebra sheaves
A, especially when the very mathematical expression of these laws are independent
of (or covariant with) thesé\s? Stated in a positive way: the laws of Physis
cannot conceivably depend on our contingent measurements (viz., “geometries”
and “spaces,” or C-algebraized spac¥s4)), which in turn means that when a
dynamical law appears to be singular or anomalous relative to a particular choice
of “space-geometry” X, A), the problem does not lie with the laper se but,
more likely, with the C-algebraized space that we have assghfasumably, by
changing theory, ultimately, (modes or operations of) observation and (algebras
of) measurements modelling the latfefin our scheme, by changingy and the
base spac¥ supporting this geometry), the apparent singularities can be resolved,
for what could it possibly mean, for instance, if one could write down Einstein’s
equations (as in (Mallios, in press; Mallios, in preparation)) over ultra-singular
(from the C*°-smooth manifold viewpoint) spaces (as in (Mallios and Rosinger,
1999, 2001) other than that the law of gravity (and the differential apparatus
supporting it) does not depend on the geometry of the background space(time)?
We return to this caustic point in the concluding section.

So, finally, following Mallios and Raptis (2001), we are now in a position to
apply ADG’s definition ofA-connection and define nontrivial finitary (Lorentzian)

91In particular, for the (fin)sheaf-theoretic expression of the law of gravity in the absence of matter
(i.e. the so-called vacuum Einstein equatiodicci = 0 (Mallios, in press; Mallios, in preparation;
Raptis, in preparation), the aforesaiecovariance ofFricci indicates the independence of the law
of gravity from our measurements (with respect to the local gaugésstivat we have laid out to
chartX) and, ultimately, from the geometry of the background spéas the latter is encoded in
the structure shedf (Mallios, 1998a,b; Mallios and Raptis, 2001).

92Forinstance, the singularities that assail general relativity—the classical theory of gravity—are most
likely due to the assumption of coordinate algebras of infinitely differentiable funclicag > (X)
on aC*-smooth spacetime manifold, and are not the “fault” of Einstein’s equations (and the
differential mechanism supporting them) whatsoever.

%3In Greek, the words “theory” Cewpa), “Observation” (‘rapatnonoig”), and “measurement”
(“u € Tpnois’) go hand in hand.
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A(= Q9)-connections, in complete analogy with (20), as
Dm = am + Am (23)

on the curved (principal) finsheaves of incidence algébiagheir corresponding
finitary differential triad7y, := (Pm, Qm, dm).*® The associated nonzero finitary
curvature is denoted bfm(Dn).

6.2. The Abstract WIT, CWT, and Their Finitary Analogues

To make our way towards sheaf-cohomologically classifying the spin-
LorentzianAms, we first define a de Rhapspacea la (Mallios, 1998a,b). This is
just a paracompact Hausdorff base spAdegether with an exact de Rham com-
plex as in (1) such that the latter's cochain sequence ends at somepgeaieas
follows

s P ™ gar 0 (24)

Then, an important lemma for the (abstract) \WI$tates that

given such an abstract de Rham p-space, with every closed pddirithere is
associated a p-dimension@ech cohomology class c of X with constant complex
coefficients, that is,(@) € HP(X, C)%

The WIT is a particular consequence of the general lemma above by taking
p = 2, and it states that

every2-dimensional integral cohomology class arises as the characteristic class
of the curvatureF of an A-connection on a line shedf; while, conversely, that

F(D) | . yields a Cech) cohomology class H:IZ(X, 7).

94n Mallios and Raptis (2001), the structure group of thgssheaves was seen to be a finitary
version of the local (orthochronous) spin-Lorentz Lie group of general relativity; hence, the epithet
“Lorentzian” to the 61(2, C)m >~ so(1, 3) -valued).Ams above.

95The procedure that leads to (23) was coined “symmetry localization” or “gauging” in Mallios
and Raptis (2001), so perhaps one could also call the corresponding triads “gauged fintriads”
T = (PnQm, Dm = dm + Am).

96 Following Mallios (1998a), we may coin this lemma “the generalized Weil Integrality theorem” for
reasons to become clear shortly. Its connection with the usual WIT was first conceived in Mallios
(1992).

97The reader may recall that € QP is said to be closed whetw = 0.

98Even more generally, one could replace the constant coefficient sheaf C by the C-vector space sheaf
kerd to arrive to the generalized WIT also employed in ADG.

99The connection is clear between this expression of the WIT and the generalized lemma above;
in particular, the integer coefficients arise from the canonical embedding of the constant sheaf of
integersZ to the constant sheaf of complexes C (Zei> C) which, in turn, gives rise to an anal-
ogous morphism between the respective 2-dimensional sheaf-cohomology grA(ps:Z) —

H2(X, C).



Finitary Cech-de Rham Cohomology 1887

Closely related to the general and concrete WITs above, and lying at the heart
of the theory of characteristic classes, is the CWT which states that

given ade Rham g-space (with g even) and a vector dhefifank n on X endowed

with an A-connectiorD whose curvature i, if p is an invariant polynomial in
Clregl(1 < a, B < n) of degree ¢2, then the characteristic closed -form of

the de Rham g-space secured by the generalized lemma for the WIT above can be
obtained by identifying..s with 7% in p (i.e. from the generalized WIT in the
aforesaid lemma: (@(F(D))) = c(F) € I:|q(X, C)!°t and, more importantlyall

this is independently of the givérrconnectiorD.1%?

The translation of the abstract (vector) sheaf-theoretic versions of the WIT
and CWT above to our finitary case of interest is immediate: the theorems still
hold true in our reticular environment, because the incidence algebra finsheaves
involved fulfill all the basic technical requirements of ADG for implementing
these theorems vector and algebra sheaf-theoretically (Mallios, 1998a,b; Mallios
and Raptis, 2001).

6.3. En Route to Classifying the Spin-LorentzianA4,s

So far one of the main successful applications of ADG is to sheaf-
cohomologically classify Maxwell fields as connections on line sheaves (Mallios,
1998a,b; Mallios, in preparation; Selesnick, 1983). Here we briefly expose this
application and by analogy we speculate on a possible finsheaf-cohomological
classification of the finitary spin-Lorentzian connectiohgintroduced in Mallios
and Raptis (2001). Again, we draw information principally from Mallios
(1998b).

100\where nowa,g are the entries of the x n-matrix of (sections of) 2-forms constituting(D) as
defined above (Mallios, 1998a,b).

10TAnd plainly p(F) € ANQY(X)) —> (A QL)(X) = Q9(X).

102yhich pretty much vindicates the interpretational distinction that we drew earlier between the
algebraic character @b and the geometric character of its associated curvafié®), since the
same “effect” that we measure (viz. the geometric ohféethich is interpreted as the field strength)
can in principle arise from two different “causes” (viz. the algebraic in chardctssnnectionD
which is interpreted as the (gauge) potential field). The geometry (and its supporting space(time)!)
that we perceive does not uniquely determine the algebraic-dynamical substratum (foam) from
which it originates (by our acts of measurement). We are thus tempted, conceptually at least, to put
D atthe quantum (algebraic) side, whiteat the classical (geometrical) side of the quantum divide,
so that an analogue of Bohr’s correspondence principle would be that the classical (commutative)
geometric realm in whictF lives (together with the\ that it respects and the spaXehat the latter
algebras are classically supposed to coordinatize and which essentially supparises from
measuring (i.e. “observing”) the quantum non-commutative algebraic realm (fluctuating pool, or
“gquantum foam” (Mallios and Rosinger, 2001; Raptis and Zapatrin, 2001) from viDiderives
and in which it varies.



1888 Mallios and Raptis

The Picard Group

For the cohomological characterization of vector sheaves, ADG employs
sheaf-cohomology; in particular, it uses their so-cattedrdinatel-cocyclesto
classify them. So, let us dwell for a while on such a classification scheme.

First, let us assume a C-algebraized spageY) and a vector shedf of rank
or dimensionalityn. Let us also assume an open coveKadr local gauge system
forE(X), U = {Ui} | i1, with respect to which one obtains the following standard
Whitney-type ofA | y,-isomorphisms

i
5i55|Ui;An|Uiz(AlUi)nEAin'iEIHB (25)

Thus, for any pair of nontrivially intersecting local open gauggsandU; in
U (i.e.U; N U; # ©) one obtains the following “local coordinate change’y; -
isomorphism

¢ =¢iog; " € Autyy, (A" ] u,) = GLN, AU;) = GLMN, A(U;)™ (26)
In fact, such a family of local automorphisms of themodule A" provides a

1-cocycle of/ with coefficients in the structure group sh&atf(n, A) in view of
the relation

dik = $ij o Pjk, (27)
with Uijk = Ui nU; NU(, j, k € I). So, we have
¢ € ZHU, GL(n, A)) (28)

which is coined thecoordinatel-cocycle of€ associated with the given local
coordinate gaugé{ of £(X).

So, given that the first homology group Xfwith coefficients inGL(n, A) is
(by definition) the direct limit of the correspondigch first cohomology group
of X as the local framéf ranges over all covers of, symbolically,

HY(X, GL(n, A)) = lim o HYU, GL(n, A)), 1 (29)

one infers that the elements Bi*(1/, GL(n, A)) are equivalence classes of coor-
dinate 1-cocycles af-dimensional vector sheaves (denoted¢ag).

Thus, the sheaf-cohomological classification scheme for vector sheaves of
rankn reads

Any ndimensional vector shedf on X is uniquely determined by a coordinate
1-cocycle in 2, GL(n, A)) associated with any local gaudé of £(X). We

103where {¢; } is a strictly positive partition of unity oA relative tolf : {¢;} C EndA = A(X).

104Where ‘G L" denotes ther-dimensional general-linear (structure) group sheaf ovt

105That the (locally finite) open covers & form an upwards directed set was explained in (Raptis,
2000b).
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write @' (X) for the equivalence (isomorphism) classes of vector sheaves of rank
n(i.e.HY(X, GL(n, A)) = @ (X)).

In keeping with the section-wise spirit in which ADG is developed, we note
that the equivalence relation between two vector sheaves” claggesnd V2]
in @7 (X) can be represented as a similarity between the section-matrices of their
corresponding 1-cocycles (sa\;flj and vizj) relative to a common local chatt
covering and coordinatiziny, as follows

vi=covjoc*! (30)

wherec; € CO(U, GL(n, A)) (a 0-cochain ok relative tol/) andU; NU; # @, as
usual.

Now, in order to make direct connection, as we wish to do here, with the
classification of the bosonic connectiods, (viz., the finitary quantum causal
gauge potentialy on the curved finsheaves of incidence algebras representing
the kinematics of dynamical quantum causality in Mallios and Raptis (2001), we
follow Selesnick’s axiomatics for line bundle-classification in Selesnick (1983),
only here we are obviously interested in line sheaves (i.e. vector sheaves of rank 1).

So, from Mallios (1998a,b) we read that for= 1 we get the following
isomorphism

N (X) = HY(X, A)we (31)

something that, without going into too much detail, enables us to arrive at the
so-calledPicard group of X—an abelian group consisting of equivalence classes
of line bundles orX—and defined as follows

Pic(X) = (®1(X), ®2) = $1(X) (32)

where the commutative and associative tensor product fusgctdnas been em-
ployed to endow®' (X) in expression (30), and far = 1, with an abelian group
structureto?

With the Picard group in hand, ADG achieves a sheaf-cohomological clas-
sification of Maxwell connection®),,x on line sheaves by making use of the
so-calledChern isomorphism

HY(X, A) = H2(X, Z) 2L [ Fuax] € iM(HZ(X, Z) — H2(X,C))  (33)

108\whereA’ denotes the sheaf of invertible elements (units) in the commutative algebra structure sheaf
A, which means thah" is an abelian group sheaf.

107Wwhere, itis understood that the tensor prodli@, £’ of two line sheavesis a line sheaf whose coor-
dinate 1-cocycle is the 5 -product of the 1-cocycles of the corresponding line sheaves (closure with
respect ta  -operation), that the inverse of a line shé€as its dualC—! = £* = Homy (£, A) (in-
verse), and that the neutral element is the structure ghigsélf, sincel @ £* = Homy (L, £) =
EndL = A (neutral element).
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which is essentially a consequence of (the abstract version of) CWT as it trans-
lates the problem of classifyirByax on line sheaveper seto one offinding the
equivalence classes of Maxwell fields having a given curva@doem Fy;ax.2%8
Moreover, in view of ADG’s quantum interpretation of connecti@mand its cur-
vatureF (D) in Footnote 102, we may read the sheaf-cohomological classification
of Maxwell fields via the Chern isomorphism above in a quantal way: what we ac-
tually determine (viz., “measure” or “observe”) is the “classical”, “commutative”
(since it respects the abelian coordinatizationd\)rfield strengthF, while the
algebraic or quantal “causes” (or origins) of a given (measufe@mainindeter-
minate sincea givenF corresponds to a whole equivalence class of connedtions
This indeterminacy resembles, even if only in spirit, Heisenberg’s standard one and
it accords with our insistence in Footnote 102 on placing the algebraic in nature
D on the quantum side of Heisenbergtshnitt while its geometric in character
F(D) in the classical realm on the other side of the quantum divide. For recall
(a watered down version of) Bohr’'s Correspondence Principle: from the noncom-
mutative “quantum soup” we always extract (i.e. measure) commutative numbers.
In fact, all this agrees with the very interpretation of the term “spacetime foam”
in Mallios and Rosinger (2001) and its finitary-algebraic in Raptis and Zapatrin
(2001).

So, the finsheaf-cohomological classification of the nontrivial (i.e. curved)
spin-Lorentzian connectiond,, on the principal finsheaves of qausets defined
in Mallios and Raptis (2001) follows directly from the analogous classification
scheme of theDyx above, since, as it was repeatedly stressed throughout the
present paper and partly in Mallios and Raptis (2001), these finsheaves fulfill all the
requirements of ADG for performing sheaf-cohomological differential geometric
constructions in spite of thé>-manifold. Thus, we define a “causon fielef’to
be the following pair

(‘Cgauspgaus) (34)
consisting of a line ﬁnshead?[?aus associated to the curvegiinsheavesS,, of

gausets in (Mallios and Raptis, 2001), together with a nontrﬁi%lconnection

DM it 110
Deauson it

108)tjsimportant to mention at this point that biveaxwell fieldADG means a pairf, Dyax) consisting
of aline sheafZ and a Maxwelliam\-connectiorDyayx Onit. £ is interpreted asthe carrier space of
Dwmax’—and only because of the line sheaf carrying it a connection may be regarded as a geometric
entity (but certainly not transformation-wise, i.e. tensorially speaking).

109|n Mallios and Raptis (2001), a “causon” was defined to be the elementary particle of the “reticular
bosonic spin-Lorentzian gauge potential fied¢h representing local curved quantum causality”,
and it was speculated that it must be intimately related to the graviton—the anticipated quantum of
the gravitational field.

11075 explained in Mallios and Raptis (2001), the arrow sign over the relevant symbols above indicate
the (quantum) causal interpretation that these structures carry. From (34) it follows th& the
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In connection with the above, we still remark that the aforementioned
“Selesnick’s Correspondence Princip(allios, 2001; Mallios, in preparation;
Selesnick, 1983) is used herewith in the (sheaf) topological algebra theory setup,
when usually referring to the topologicaldqt Banach) algebra of smooth func-
tions on a (compact) manifold, based oK aheory argument, providing further,
directly, the ‘smooth analogueof the classical (“continuous’) Serre—Swan theo-
rem (Mallios, 2001)—or in more detail, (Mallios, in preparation). In keeping with
Selesnick’s vector bundle axiomatics (Selesnick, 1983), as well as with its vector
sheaf descendants (Mallios, 1998a,b,2001; Mallios, in preparation) local sections
of the LT, ,s in (34) correspond to local (pre)quantdinstates of bare or free
causons. This brings us to the next section.

7. FUTURE OUTLOOK: ACOUPLE OF APPLICATIONS TO DISCRETE
LORENTZIAN QUANTUM GRAVITY

In this penultimate section we discuss two possible future applications of
some of the ideas that were put forward above to certain aspects of current discrete
Lorentzian quantum gravity research that are of interest to us.

7.1. Geometric Prequantization of Lorentzian Gravity

Continuing the remarks that conclude the last section (and footnote), we note
that according to Selesnick’s gene€aP-vector bundle axiomatics in Selesnick
(1983)

local sections of line bundles correspond to states of free bosunite, local
sections of vector bundles (such@3) correspond to states of bare fermions

ADG'’s vector sheaf analogues of these results, as explained above, are of imme-
diate avail:

boson states are sections of line sheaves, while fermion states are sections of
Grassmannian (exterior) vector sheaves

and, of course, ADG’s generality allows us to consider not only smooth vector

part off)@aus should also carry an arrow (Writsﬁ@aus) (Mallios and Raptis, 2001). Of course, we
can further remark at this point that we are aware that the photon (the quansignofis a spin-1
gauge boson, while the graviton, a spin-2 quantum. Here, however, we do not intend to dwell longer
on the spin-particulars of the caus@?g‘ausother than that, quantum spin-statistically speaking, it
is a boson (Mallios, 1998a,b; Selesnick, 1983).

111The epithet “prequantum” pertains to a possible application of the general theory of “geometric
prequantization” as developed in Mallios (1998a,b, 1999, 2001, in preparation) to the causon field
in (34). See Subsection 7.1 next.
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sheaves, butny vector sheaf ovein principle, any base spacg? An important
immediate application of the foregoing ideas, and in particular of WIT, is the result,
just quotedverbatim fromMallios (1998a,b, 1999, 2001), that

Every free elementary particle is prequantizable; that is to say, it entails by itself
a prequantizing line sheaf®

and in our particular finsheaves of gausets scenario for discrete Lorentzian gravity
(Mallios and Raptis, 2001; Raptis, in preparation), that

A free causon entails by itsafﬁg‘aus.

In anutshell, the importance of this resultis that, in line with the general philosophy
of geometric quantization (Mallios, 1999, 2001; Simms, 1976; Souriau, 1977;
Woodhouse, 1997), one is able to arrive at the main constructions of quantum
field theory (i.e. conventionally speaking, 2nd-quantized structuregaybiding
altogether the process of 1st-quantizatithus, effectively, byavoiding altogether

any fundamental commitment to the classical Hamiltonian mechanics and the so-
called “canonical formalism” that accompanieskor the case of (the quantization

of) gravity in particular, such a scheme (Souriau, 1977) would appear to bypass in
a single leap the whole of the canonical approach to quantum gravity with all its
technical and conceptual problems. Just to mention three such problems:

(a) The problem of the diffeomorphism group Diffij—the gauge group
of general relativity—since the canonical theory assumes a background
differential (i.e.C*°-smooth) manifold spacetinid.

(b) The problem of finding the “right” (Hilbert) physical state spatéor the
graviton—with the notorious problems of time, unitarity, and probability
interpretation in quantum gravity that go with it.

(c) The problem of decidingrima facie(i.e. straight from the classical theory
in some rather “natural” way) what are (the algebras of) the physical
observables (to be representedHrabove) relevant to quantum gravity,
since, for instance, there are quantum mechanical observables without
known classical counterparts@¢Bin, 1979).14

and it is clear from the foregoing how the application of geometric prequantization
a la ADG to a finitary, causal, and quantal version of Lorentzian gravity (Mallios,

2001; Mallios and Raptis, 2002b) may be able to evade all three. At this point
we could also infer that the finsheaf-theoretic scenario for discrete Lorentzian

112which serves as a base space(time) (viz. “configuration space”) for the physical system in focus.

113 fact, this is so regardless of whether the elementary particle is a boson or fermion (Mallios, 1992,
1998a,b, 1999, 2001; Selesnick, 1983).

114Thus, it would be begging the question to (canonically) quantize a classical theory—in particular,
general relativity—since we could encounter entities in the quantum regime that are not observable
atthe classical level (in which case, the correspondence principle would be effectively meaningless).
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quantum gravity via ADG is more in line with a covariant path integral (over
spaces of self-dual(2, C)n-valuedAn,S) approach to the quantization of gravity,
rather than with the canonical (Hamiltonian) scheme. This too was anticipated at
the end of Mallios and Raptis (2001).

7.2. Finitary ADG on Consistent-Histories, Topoi in Quantum Logic and
Quantum Gravity, and a Connection with SDG

The second future application of the finitary ADG ideas above that we would
like to suggest is to the consistent-histories approach to quantum theory and quan-
tum gravity in particular.

In Raptis (submitted), for instance, sheaves of gausets over the Vietoris-
topologized base poset category of Boolean subalgebras of the universal orthoal-
gebra of history propositions were introduced, as it were, to defireaves of
guantum causal historiest the end of the paper it was speculated that one should
be able to do differential geometeyla ADG on such sheaves—something that
could be of immediate value to quantum gravity research when approached via
consistent-histories. There seems to be no foreseeable obstacle to such an endeavor,
since, as we have time and again stressed, the results of ADG are effectively base
space independeH?t

A more specific project along these lines could be the following: since the
topostheoretic perspective on both the quantal logic of consistent-histories (Isham,
1997) and on the usual quantum logic (Butterfietdal., 2000; Butterfield and
Isham, 1998,1999) has revealed to us that in a very geometrical sense quantum
logic is warped or curved relative to its local classical sublogics, so the closely
analogous topos-like aggregate of quantum causal histories” shéaney also
exemplify such a curvature which, in view of the quantum causal interpretation of
the objects in the QCHT, may be directly related to the reticular curved quantum
causality (viz., discrete Lorentzian quantum gravity) studied in Mallios and Raptis
(2001)**" Thus, for example, it would be interesting search for a nontrivial
characteristic cocycle in the curved sheaves of quantum causal histdites
ideas developed in this paper clearly indicate that this is a legitimate and quite
feasible project:®

115The reader is encouraged to read the concluding remarks in Raptis (submitted) that predict, for
example, a possible sheaf-cohomological classification of the algebra sheaves of quantum causal
histories along the lines of ADG. See also the following paragraph.

118Coined the “Quantum Causal Histories Topos” (QCHT) in Raptis (submitted).

117That a topos-theoretic approach not only to quantum logic, but also to quantum gravity proper,
is quite a promising route, was nicely presented in Butterfield and Isham (2000). See also Raptis
(2001b).

118This project, in the context of the topos-theoretic approach to quantum logic proper (Butterfield
et al, 2000; Butterfield and Isham, 1998,1999) and to the similar approach to the logic of
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We close this section with two remarks: first, the aforementioned possible
QCHT organization of the sheaves of quantum causal histories should be compared
with the topoi modelling the mathematical universes in which to carry out the
Kock—Lawvere Synthetic Differential Geometry (SDG) (Lavendhomme, 1996).
The latter, in a nutshell, is an extension of the usual, “classicaFdifferential
geometry by two means: first, by admitting nilpotent “real numbers”, and second,
by suitably modifying the logic underlying the usual Calculus from the Boolean
(classical) one of the topd3et of classical constant sets (in which, for instance,
the usualC*-calculus is constructed), to the Brouwerian (intuitionistic) one of
the toposSh(X) of varying sets (Raptis, submitted) in order to cope with the first
extension'® Moreover, SDG purports to be able to translate almost all the basic
constructions of the usual Calculus on smooth manifolds into synthetic t&trms.
Only for this, and in view of similar claims made about ADG in the present paper,
it would certainly be worthwhile to initiate a comparison between ADG and SDG,
even if only at an abstract mathematical le¥¥&lHowever, as far as applications
to quantum gravity are concerned, such a comparison could prove to be beneficial
to physics too, since it has been seriously proposed that SDG could cast light on
the problem of quantum gravity (Butterfield and Isham, 2000).

Finally, Finkelstein (1988), in a reticular-algebraic model for the quantum
structure and dynamics of spacetime similar to ours, called the “causal net,” urged
us to develop a causal version of the (co)homology theory of the usual algebraic
topology—as it were,tb algebraize and causalize (with ultimate aim to quantize)
topology (in order to apply it to the quantum structure and dynamics of spacetime)
Since, following Sorkin’s insight (Sorkin 1995) to change physical interpretation of
the fintoposets involved from topological to causal, our finitary incidence algebras
model gqausets (and not topological spaces proper) (Raptis, 2000a) while their
curved finsheaves represent the gausets” dynamical variations (Mallios and Raptis,
2001), itis perhaps fair to say that the finitaﬁgch-de Rham finsheaf-cohomology
presented in the present paper comes very close to materializing Finkelstein’s
imperative abové??

consistent-histories (Isham, 1997), was originally conceived by John Hamilton and Chris Isham
(Chris Isham in private communication).

1191t is worth mentioning here the result, due to Dubuc (1979, 1981), that the category of (finite dimen-
sional) paracompa@*°-smooth manifolds and diffeomorphisms between them can be faithfully
embedded into a topos, preserving fiber products, open covers, as well as mapping the usual real
line R into the aforementioned nilpotent-enriched “real numbers"—the so-called Kock—Lawvere
ring Rk -

120Fqr instance, it has provided, like we have done here for the finitary case, a synthetic version of de
Rham’s theorem at the level of chain complexes, and much more

121For instance, it would be interesting to compare the way the two theories extend and generalize the
usual de Rham theory af°-smooth manifolds.

122Thys, the reader can now go back to the various (co)homological structures mentioned in the
present paper and draw an arrow (indicating causal, not topological proper, interpretation) over
their symbols!
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8. PHYSICO-PHILOSOPHICAL FINALE

We close the present paper by making some physico-philosophical remarks
in the spirit of the two questions raised in the introductory section.

We hope that by this work we have made it clear that one can actually carry out
most of the usual differential geometric constructions effectively without use of any
sort of C*°-smoothness or any of the conventional “classical” Calculus that goes
with it. This to a great extent indicates, in partial response to the second question
opening the paper, that the differential geometric technique or “mechanism”—
the “differential mechanics” or “differential operationalism” so to speak—is not
crucially dependent on @>°-smooth background space(time) and the coordinate
algebras of *°-smooth functions (or generalized “position measurements”, or even
“localizations’) associated with its geometric points, no matter how strongly the
usual calculus on manifolds has “forced” us so far to postulate it up-front before
we set up any differential geometric theory/model of Nature. To this in many
ways misleading pseudo-imperativeness we tend to attribute the almost instinctive
reaction of the modern mathematical physicist to regard the smooth continuum
as a model of spacetime of grgdtysicalsignificance and impo#e® Admittedly,
the manifold has served us well; after all, the very differential geometry on which
Einstein’s successful general relativity theory of the (classical) gravitional field
rests is vitally dependent on it.

However, it soon became clear by means of the celebrated singularity theo-
rems (Penrose, 1977) that the classical theory of gravity and the smooth spacetime
continuum that supports it are assailed by anomalies and diseases in the form
of singularities long before a possible quantization scheme for them becomes
an issue. Especially the so-called black hole singularities seem to indicate that
general relativity and its classical continuous spacetime backbone break down
near, let alone in the interior of, thef#. It now appears plain to us that classical
differential geometry cannot cope with such pathologies and this has prompted
theoretical physicists to speculate that a quantum theory of gravity should be able
to heal or at least alleviate these maladies. Indeed, Hawking’s semi-classical (or
semi-quantum!) treatment of these objects showed us that they should properly be
regarded not as universal absorbers, but as some kind of thermodynamically unsta-
ble black bodies that can thermally radiate quanta (Hawking, 1975). An even more
startling behavior of such singularities was discovered a bit earlier by Bekenstein
and Hawking (Bekenstein, 1973; Hawking, 1976) who showed that they have rich

123This brings to mind Einstein’s famous suspicion about the actual physicality of spaceSmecé
and time are concepts by which we think, not conditions in which w&(Bmstein, 1950)), and its
C*°-smooth manifold model (see the three quotations of Einstein in the opening section).
124Fyrthermore, this came to be distilled to the following Popperian “falsifiability’-like motto: gen-
eral relativity is a good theory, because, among other things such as agreement with experi-
ments/observations, it predicts its own downfall by the existence of singular solutions to Einstein’s
gravitational field equations.
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thermodynamic andn extensginformation-theoretic attributes not describable,

let alone explainable, by a classical theoresis of spacetime structure and its dynam-
ics. It now seems natural to the theorist to anticipate that only a cogent quantum
theory of gravity can deal effectively with black hole physics—especially with
their aforementioned thermal evaporation phenomena and their horizons” area-
proportional entropy.

On the other hand, one could also view gravitational singularities from a
slightly different perspective. Such a perspective was adopted by Finkelstein
(Finkelstein, 1958) when he dealt with the doubly singular Schwarzschild so-
lution to Einstein’s equations. In that paper he effectively showed, by employing
a novel spacetime coordinate system, that the external singulatfy?(m) in the
“epidermis” of the Schwarzschild black hole indicates, in fact, that the latter is a
unidirectional membrane allowing the propagation through its horizon of particles,
but not of their antiparticle®? At the same time, however, his work also implicitly
entailed that the interior singularity & 0) cannot be done away with simply by a
coordinate transformation, thus indicating that in the “guts” of the Schwarzschild
black hole—right at the point-mass source of the gravitational field—there is a
“real” singularity (i.e. not just a coordinate one) which signals the inadequacy of
general relativity in describing the gravitational field right at its source. Again, it
is currently believed that only a quantum theoresis of gravity can achieve such a
descriptiont?®

To us, what is very educational from Finkelstein’s alternative perspective on
the singularity riddle is the employment of new coordinates (albeit, still labelling
the point events of a classical differential manifold model for spacetime) which
effectively resolved the exterior singularity, followed by a sound physical interpre-
tation (particle/antiparticle or past/future-asymmetry) of the resolved picture. This
is in striking contrast to the usual treatment of singularities as real physical dis-
eases that cannot be cured within the classi€alsmooth differential geometric
framework of general relativity (Penrose, 1977). Thus, in s@ch-tonservative”
approaches, singularities are notto be encountered, because one does not know how
to treat them: rather, they are to be isolated and cut-off from a remaining “effective
spacetime manifold” in which non-anomalous physical processes occur normally
and can be adequately described®33+smooth means (Geroch 1968a,b,1972).

In contradistinction, what we advocate herein is akin, atleast in spirit and phi-
losophy, to Finkelstein’s approach: by changing focus from the classical coordinate

125pginting thus to a fundamental time-asymmetry even in the classical gravitational deep (Finkelstein,
1988).

126This may be understood in close analogy with QED which effectively gave, with the aid of some
theoretically rathead hocand conceptually questionable renormalization procedures, a calcula-
tionally finite theory of the interaction of the photon radiation field with its source point electron.
Alas, quantum gravity, when regarded as the quantum field theagy,ofike QED is forA,,, can
be shown to be non-renormalizable



Finitary Cech-de Rham Cohomology 1897

structure algebra sheaf 6#°-smooth functions on the differential manifold to an-
other structureh-sheaf more suitable to the physical problem under theoretical
scrutiny, while still retaining at our disposal most of the panoply of the powerful
differential mechanism of the usu@t°-calculus, we effectively integrate, absorb
or“engulf’ singularities in our theory rather than stumble onto them and, as aresult,
meticulously try to avoid thert¥” Thus, altogether there is no issue of avoiding
singularities or of continuing to perforgf°-calculus in a singularity-amputated
smooth spacetime manifold, since we can calculate (i.e. actually carry out an ab-
stract and quite universal calculus) in their very presence. Singularities are not
impediments to ADG, for its abstract, algebraic in nature, sheaf-theoretic differ-
ential mechanism in a strong sense “sees through them,” while on the other hand,
the classical*>°-differential geometry on smooth manifolds is quite impervious to
and intolerant of them. What this contrast entails, of course, is that on the one hand
mathematicians (especially differential equations specialists) should tell us what
it means to set up a perfectly legitimate differential equation with possibly ultra-
singular coefficient functions and look for its solutions within the ultra-singular
structureA-sheaf?® and on the other the theoretical physicist (especially the rel-
ativist and the quantum gravity researcher) is burdened with the responsibility to
physically interpreta dynamics amidst singularities, and in spite of them” much

in the same way that, as briefly noted above, Finkelstein (1958) physically inter-
preted the new picture of the exterior Schwarzschild singularity in the light of new
coordinates as a semi-permeable (i.e., particle-allowing/antiparticle-excluding or
equivalently past/future-asymmetirc) membréfie.

What will certainly burden us in the immediate future is to set up a finitary
version of Einstein’s equations in the language of ADG, since they have already
been cast abstractly (Mallios, in press; Mallios, in preparation). Indeed, the second
author is already looking into this possibility (Raptis, in preparation); furthermore,
itmust be noted that the algebraic ideas propounded above are in close analogy with
Regge’s famous coordinate-free and reticular simplicial gravity proposed Regge
(1961) and further elaborated from a (topo)logical perspective in Zapatrin (1993),

127ps it were, by making sure that we avoid them so that we can continue performing the usual
C*>-calculus. In this sense our theory is n6t®-calculus conserving.”

128|_ike in Mallios and Rosinger (1999), for instance, whérsheaves of functions with everywhere
dense singularities were studied under the prism of ADG, or even more generally, subsequently in
Mallios and Rosinger (2001), where in the same spirit “multifoam algebras” dealing with singular-
ities on arbitrary sets (under the proviso that their complements are dense) were considered.

1291n a “psychological” sense, one is expected to be surprised or even intimidated, hence one’s calculus
to be impeded, by singularities when one works in the featureless and uniform differential manifold
and itsC*-algebras of coordinates; while on the other hand, if singularities is what one routinely
encounters in the space and its coordinate functions that one is working with like, for instance, in
Mallios and Rosinger (1999, 2001), and at the same time one is able to retain most of the practically
useful differential mechanism, one is hardly in awe of singularities, so that one proceeds uninhibited
with one’s differential geometric constructions and singularities present no essential problem.
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although it must also be admitted that the “freedom from coordinates” espoused by
ADG is, in fact, freedom to use in principtamycoordinate algebra structure sheaf
no matter how singular or anomalous it may seem to be from the converdinal
smooth perspective. For how can the laws of Nature, that are usually described
in terms of differential equations, stumble upon out own measurements on our
own coordinatizations (i.e. “arithmetizations” or “geometrizations’) of Her events
(phenomena) and the spaces that host them? How can we ever hope to understand
Physis if we ascribe to Her singularities and pathologies when it is more likely
that it is our own theories that are short-sighted, of limited scope and descriptive
power?

It seems only proper to us to conclude the present study as we stated it is
Section 1, namely, by quoting and briefly commenting on Einstein, as well as by
summarizing, by means of “sloganizing’, our basic thesis:

... Itdoes not seem reasonable to introduce into a continuum theory points (or lines etc)
of which the field equations do not hald. Is it conceivable that a field theory permits
one to understand the atomistic and quantum structure of reality? Almost everybody
will answer with “no” and . . at the present time nobody knows anything reliable about
it...so that we cannot judge in what manner and how strongly the exclusion of sin-
gularities reduces that manifold of solutiansWe do not possess any method at all

to derive systematically solutions that are free of singularitié8 (1956). (Einstein,
1956)

We do sincerely hope that, at least conceptually, the ideas propounded herein
will help us catch initial, but nevertheless clear, glimpses of such an apparently
much needed mathematical method.

Finally, the following two “slogans” crystallize our central thesis in the present
paper. In the same way that

Slogan 1. Continuity is independent of the continudih.
so

Slogan 2. Differentiability is independent of smoothné%s.
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